These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20146600)

  • 21. Working memory of somatosensory stimuli: an fMRI study.
    Savini N; Brunetti M; Babiloni C; Ferretti A
    Int J Psychophysiol; 2012 Dec; 86(3):220-8. PubMed ID: 23044088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning.
    Sakai K; Hikosaka O; Miyauchi S; Takino R; Sasaki Y; Pütz B
    J Neurosci; 1998 Mar; 18(5):1827-40. PubMed ID: 9465007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrete parieto-frontal functional connectivity related to grasping.
    Hattori N; Shibasaki H; Wheaton L; Wu T; Matsuhashi M; Hallett M
    J Neurophysiol; 2009 Mar; 101(3):1267-82. PubMed ID: 19109459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain-independent neural underpinning of task-switching: an fMRI investigation.
    Vallesi A; Arbula S; Capizzi M; Causin F; D'Avella D
    Cortex; 2015 Apr; 65():173-83. PubMed ID: 25734897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions.
    Tosoni A; Galati G; Romani GL; Corbetta M
    Nat Neurosci; 2008 Dec; 11(12):1446-53. PubMed ID: 18997791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network.
    Tschentscher N; Mitchell D; Duncan J
    J Neurosci; 2017 May; 37(18):4841-4847. PubMed ID: 28408412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progressive Recruitment of the Frontoparietal Multiple-demand System with Increased Task Complexity, Time Pressure, and Reward.
    Shashidhara S; Mitchell DJ; Erez Y; Duncan J
    J Cogn Neurosci; 2019 Nov; 31(11):1617-1630. PubMed ID: 31274390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional connectivity between parietal and frontal brain regions and intelligence in young children: the Generation R study.
    Langeslag SJ; Schmidt M; Ghassabian A; Jaddoe VW; Hofman A; van der Lugt A; Verhulst FC; Tiemeier H; White TJ
    Hum Brain Mapp; 2013 Dec; 34(12):3299-307. PubMed ID: 23008156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early math achievement and functional connectivity in the fronto-parietal network.
    Emerson RW; Cantlon JF
    Dev Cogn Neurosci; 2012 Feb; 2 Suppl 1(Suppl 1):S139-51. PubMed ID: 22682903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.
    Lee KH; Choi YY; Gray JR; Cho SH; Chae JH; Lee S; Kim K
    Neuroimage; 2006 Jan; 29(2):578-86. PubMed ID: 16122946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential coupling of visual cortex with default or frontal-parietal network based on goals.
    Chadick JZ; Gazzaley A
    Nat Neurosci; 2011 May; 14(7):830-2. PubMed ID: 21623362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of frontal and parietal neuronal activity by visuomotor learning. An ERP analysis of implicit and explicit pursuit tracking tasks.
    Hill H
    Int J Psychophysiol; 2014 Mar; 91(3):212-24. PubMed ID: 24373887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control.
    Woolgar A; Afshar S; Williams MA; Rich AN
    J Cogn Neurosci; 2015 Oct; 27(10):1895-911. PubMed ID: 26058604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fronto-parietal numerical networks in relation with early numeracy in young children.
    Zhang H; Wee CY; Poh JS; Wang Q; Shek LP; Chong YS; Fortier MV; Meaney MJ; Broekman BFP; Qiu A
    Brain Struct Funct; 2019 Jan; 224(1):263-275. PubMed ID: 30315414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fronto-parietal hypo-activation during working memory independent of structural abnormalities: conjoint fMRI and sMRI analyses in adolescent offspring of schizophrenia patients.
    Diwadkar VA; Pruitt P; Goradia D; Murphy E; Bakshi N; Keshavan MS; Rajan U; Reid A; Zajac-Benitez C
    Neuroimage; 2011 Sep; 58(1):234-41. PubMed ID: 21729757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compositionality of rule representations in human prefrontal cortex.
    Reverberi C; Görgen K; Haynes JD
    Cereb Cortex; 2012 Jun; 22(6):1237-46. PubMed ID: 21817092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Food-related salience processing in healthy subjects during word recognition: Fronto-parietal network activation as revealed by independent component analysis.
    Safi A; Nikendei C; Terhoeven V; Weisbrod M; Sharma A
    Brain Behav; 2018 Jan; 8(1):e00887. PubMed ID: 29568685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural substrates for visual pattern recognition learning in Igo.
    Itoh K; Kitamura H; Fujii Y; Nakada T
    Brain Res; 2008 Aug; 1227():162-73. PubMed ID: 18621033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.