These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20146600)

  • 41. Food-related salience processing in healthy subjects during word recognition: Fronto-parietal network activation as revealed by independent component analysis.
    Safi A; Nikendei C; Terhoeven V; Weisbrod M; Sharma A
    Brain Behav; 2018 Jan; 8(1):e00887. PubMed ID: 29568685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.
    Poch C; Campo P; Parmentier FB; Ruiz-Vargas JM; Elsley JV; Castellanos NP; Maestú F; del Pozo F
    Neuropsychologia; 2010 Nov; 48(13):3846-54. PubMed ID: 20868702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study.
    Darki F; Klingberg T
    Cereb Cortex; 2015 Jun; 25(6):1587-95. PubMed ID: 24414278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network.
    Linden DE; Bittner RA; Muckli L; Waltz JA; Kriegeskorte N; Goebel R; Singer W; Munk MH
    Neuroimage; 2003 Nov; 20(3):1518-30. PubMed ID: 14642464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cue-switch effects do not rely on the same neural systems as task-switch effects.
    De Baene W; Brass M
    Cogn Affect Behav Neurosci; 2011 Dec; 11(4):600-7. PubMed ID: 21874602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The implementation of verbal instructions: an fMRI study.
    Hartstra E; Kühn S; Verguts T; Brass M
    Hum Brain Mapp; 2011 Nov; 32(11):1811-24. PubMed ID: 21140434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The importance of encoding-related neural dynamics in the prediction of inter-individual differences in verbal working memory performance.
    Majerus S; Salmon E; Attout L
    PLoS One; 2013; 8(7):e69278. PubMed ID: 23874935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A putative implication for fronto-parietal connectivity in out-of-body experiences.
    Easton S; Blanke O; Mohr C
    Cortex; 2009 Feb; 45(2):216-27. PubMed ID: 19058798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frontoparietal representations of task context support the flexible control of goal-directed cognition.
    Waskom ML; Kumaran D; Gordon AM; Rissman J; Wagner AD
    J Neurosci; 2014 Aug; 34(32):10743-55. PubMed ID: 25100605
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Frontal networks for learning and executing arbitrary stimulus-response associations.
    Boettiger CA; D'Esposito M
    J Neurosci; 2005 Mar; 25(10):2723-32. PubMed ID: 15758182
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition.
    Hazeltine E; Bunge SA; Scanlon MD; Gabrieli JD
    Neuropsychologia; 2003; 41(9):1208-17. PubMed ID: 12753960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex.
    Woolgar A; Thompson R; Bor D; Duncan J
    Neuroimage; 2011 May; 56(2):744-52. PubMed ID: 20406690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Global increase in task-related fronto-parietal activity after focal frontal lobe lesion.
    Woolgar A; Bor D; Duncan J
    J Cogn Neurosci; 2013 Sep; 25(9):1542-52. PubMed ID: 23767925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parietal and frontal object areas underlie perception of object orientation in depth.
    Niimi R; Saneyoshi A; Abe R; Kaminaga T; Yokosawa K
    Neurosci Lett; 2011 May; 496(1):35-9. PubMed ID: 21470573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.