These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20146600)

  • 61. Listening to action-related sentences activates fronto-parietal motor circuits.
    Tettamanti M; Buccino G; Saccuman MC; Gallese V; Danna M; Scifo P; Fazio F; Rizzolatti G; Cappa SF; Perani D
    J Cogn Neurosci; 2005 Feb; 17(2):273-81. PubMed ID: 15811239
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ventral fronto-parietal contributions to the disruption of visual working memory storage.
    Hakun JG; Ravizza SM
    Neuroimage; 2016 Jan; 124(Pt A):783-793. PubMed ID: 26436710
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effective Connectivity of the Fronto-Parietal Network during the Tangram Task in a Natural Environment.
    Hu Z; Lam KF; Yuan Z
    Neuroscience; 2019 Dec; 422():202-211. PubMed ID: 31682954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The neural representation of extensively trained ordered sequences.
    Van Opstal F; Fias W; Peigneux P; Verguts T
    Neuroimage; 2009 Aug; 47(1):367-75. PubMed ID: 19376245
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The neural selection and integration of actions and objects: an fMRI study.
    Yoon EY; Humphreys GW; Kumar S; Rotshtein P
    J Cogn Neurosci; 2012 Nov; 24(11):2268-79. PubMed ID: 22905819
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching.
    Philipp AM; Weidner R; Koch I; Fink GR
    Hum Brain Mapp; 2013 Aug; 34(8):1910-20. PubMed ID: 22438215
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distinct fronto-striatal couplings reveal the double-faced nature of response-outcome relations in instruction-based learning.
    Ruge H; Wolfensteller U
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):349-64. PubMed ID: 25361755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.
    Strenziok M; Krueger F; Deshpande G; Lenroot RK; van der Meer E; Grafman J
    Soc Cogn Affect Neurosci; 2011 Oct; 6(5):537-47. PubMed ID: 20934985
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Distinct neural substrates for visual search amongst spatial versus temporal distractors.
    Coull JT; Walsh V; Frith CD; Nobre AC
    Brain Res Cogn Brain Res; 2003 Jul; 17(2):368-79. PubMed ID: 12880907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of task demands on the neural patterns generated by novel instruction encoding.
    Sobrado A; Palenciano AF; González-García C; Ruz M
    Cortex; 2022 Apr; 149():59-72. PubMed ID: 35184015
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Frontal cortex and the discovery of abstract action rules.
    Badre D; Kayser AS; D'Esposito M
    Neuron; 2010 Apr; 66(2):315-26. PubMed ID: 20435006
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Flexible rule use: common neural substrates in children and adults.
    Wendelken C; Munakata Y; Baym C; Souza M; Bunge SA
    Dev Cogn Neurosci; 2012 Jul; 2(3):329-39. PubMed ID: 22669034
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks.
    Peterson BS; Kane MJ; Alexander GM; Lacadie C; Skudlarski P; Leung HC; May J; Gore JC
    Brain Res Cogn Brain Res; 2002 May; 13(3):427-40. PubMed ID: 11919006
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli.
    Lobanov OV; Quevedo AS; Hadsel MS; Kraft RA; Coghill RC
    Pain; 2013 Sep; 154(9):1758-1768. PubMed ID: 23711484
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamic interactions in the fronto-parietal network during a manual stimulus-response compatibility task.
    Cieslik EC; Zilles K; Grefkes C; Eickhoff SB
    Neuroimage; 2011 Oct; 58(3):860-9. PubMed ID: 21708271
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spatial and effector processing in the human parietofrontal network for reaches and saccades.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2009 Jun; 101(6):3053-62. PubMed ID: 19321636
    [TBL] [Abstract][Full Text] [Related]  

  • 79. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback.
    Mayhew SD; Porcaro C; Tecchio F; Bagshaw AP
    Neuroimage; 2017 Mar; 148():330-342. PubMed ID: 28093359
    [TBL] [Abstract][Full Text] [Related]  

  • 80. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.