BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20147037)

  • 1. High-resolution dual-trap optical tweezers with differential detection: managing environmental noise.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip72. PubMed ID: 20147037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution dual-trap optical tweezers with differential detection: an introduction.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.top60. PubMed ID: 20147062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution dual-trap optical tweezers with differential detection: minimizing the influence of measurement noise.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip75. PubMed ID: 20147040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution dual-trap optical tweezers with differential detection: data collection and instrument calibration.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip74. PubMed ID: 20147039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip76. PubMed ID: 20147041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential detection of dual traps improves the spatial resolution of optical tweezers.
    Moffitt JR; Chemla YR; Izhaky D; Bustamante C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9006-11. PubMed ID: 16751267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in optical tweezers.
    Moffitt JR; Chemla YR; Smith SB; Bustamante C
    Annu Rev Biochem; 2008; 77():205-28. PubMed ID: 18307407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers.
    Klein M; Andersson M; Axner O; Fällman E
    Appl Opt; 2007 Jan; 46(3):405-12. PubMed ID: 17228388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule studies of DNA binding proteins using optical tweezers.
    Kimura Y; Bianco PR
    Analyst; 2006 Aug; 131(8):868-74. PubMed ID: 17028717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical measurements of the laser-inducedultrasonic waves on moving objects.
    Pozar T; Gregorcic P; Mozina J
    Opt Express; 2009 Dec; 17(25):22906-11. PubMed ID: 20052217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA molecular handles for single-molecule protein-folding studies by optical tweezers.
    Cecconi C; Shank EA; Marqusee S; Bustamante C
    Methods Mol Biol; 2011; 749():255-71. PubMed ID: 21674378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.