These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20147241)

  • 21. Probability aspects of supernumerary production in the regenerating limbs of the axolotl, Ambystoma mexicanum.
    Turner RN
    J Embryol Exp Morphol; 1981 Oct; 65():119-26. PubMed ID: 7334295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and expression of a maternal axolotl cyclin B1 during oogenesis and early development.
    Pelczar H; Caulet S; Thibier C; Aubet G; Poulhe R; Vallianou I; Yamashita M; Andéol Y
    Dev Growth Differ; 2007 Jun; 49(5):407-19. PubMed ID: 17428262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Origin of the cells in the symmetrical forelimbs of the axolotl Ambystoma mexicanum].
    Tank P
    Ontogenez; 1989; 20(2):179-91. PubMed ID: 2740070
    [No Abstract]   [Full Text] [Related]  

  • 25. Dermal fibroblasts contribute to multiple tissues in the accessory limb model.
    Hirata A; Gardiner DM; Satoh A
    Dev Growth Differ; 2010 May; 52(4):343-50. PubMed ID: 20148925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a TM-4 type tropomyosin that is essential for myofibrillogenesis and contractile activity in embryonic hearts of the Mexican axolotl.
    Spinner BJ; Zajdel RW; McLean MD; Denz CR; Dube S; Mehta S; Choudhury A; Nakatsugawa M; Dobbins N; Lemanski LF; Dube DK
    J Cell Biochem; 2002; 85(4):747-61. PubMed ID: 11968015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl.
    Nacu E; Glausch M; Le HQ; Damanik FF; Schuez M; Knapp D; Khattak S; Richter T; Tanaka EM
    Development; 2013 Feb; 140(3):513-8. PubMed ID: 23293283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards understanding paternal extragenic contributions to early amphibian pattern specification: the axolotl ts-1 gene as a model system.
    Malacinski GM; Barone D
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():53-68. PubMed ID: 3841668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).
    Sefton EM; Piekarski N; Hanken J
    Evol Dev; 2015; 17(3):175-84. PubMed ID: 25963195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].
    Vladimirova IG; Kleĭmenov SIu; Alekseeva TA; Radzinskaia LI
    Izv Akad Nauk Ser Biol; 2003; (6):706-11. PubMed ID: 14994475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic expression of two thrombospondins during axolotl limb regeneration.
    Whited JL; Lehoczky JA; Austin CA; Tabin CJ
    Dev Dyn; 2011 May; 240(5):1249-58. PubMed ID: 21360624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene and transgenics nomenclature for the laboratory axolotl-Ambystoma mexicanum.
    Nowoshilow S; Fei JF; Voss SR; Tanaka EM; Murawala P
    Dev Dyn; 2022 Jun; 251(6):913-921. PubMed ID: 33896069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
    Ericsson R; Cerny R; Falck P; Olsson L
    Dev Dyn; 2004 Oct; 231(2):237-47. PubMed ID: 15366001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration.
    Khan P; Linkhart B; Simon HG
    Dev Biol; 2002 Oct; 250(2):383-92. PubMed ID: 12376111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide sequence and expression of ribosomal protein S3 mRNA during embryogenesis in the Mexican axolotl (Ambystoma mexicanum).
    Bhatia R; Dube DK; Lemanski LF
    Biochem Mol Biol Int; 1996 May; 38(6):1079-85. PubMed ID: 8739028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transgenesis in axolotl (Ambystoma mexicanum).
    Khattak S; Tanaka EM
    Methods Mol Biol; 2015; 1290():269-77. PubMed ID: 25740493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axbrn-1: a maternal transcript encodes a POU transcription factor that is later expressed in the developing central nervous system of axolotl embryos.
    Masi T; Johnson AD
    Dev Genes Evol; 2001 Sep; 211(8-9):449-52. PubMed ID: 11685581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum.
    Richman AD; Herrera G; Reynoso VH; Méndez G; Zambrano L
    Int J Immunogenet; 2007 Dec; 34(6):475-8. PubMed ID: 18001306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of innervation in the manifestation of the digits in transplanted regeneration blastemas of the axolotl (Ambystoma mexicanum).
    Faber J; De Both NJ
    Arch Biol (Liege); 1970; 81(2):215-27. PubMed ID: 5516877
    [No Abstract]   [Full Text] [Related]  

  • 40. Turning the frog into a princely model.
    Sheets MD
    Nat Biotechnol; 1998 Mar; 16(3):233-4. PubMed ID: 9527997
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.