These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20147557)

  • 21. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent.
    Li Y; Gamper N; Shapiro MS
    J Neurosci; 2004 Jun; 24(22):5079-90. PubMed ID: 15175377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+/calmodulin-dependent protein kinase II inhibitors disrupt AKAP79-dependent PKC signaling to GluA1 AMPA receptors.
    Brooks IM; Tavalin SJ
    J Biol Chem; 2011 Feb; 286(8):6697-706. PubMed ID: 21156788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels.
    Loussouarn G; Park KH; Bellocq C; BarĂ³ I; Charpentier F; Escande D
    EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.
    Padilla K; Wickenden AD; Gerlach AC; McCormack K
    Neurosci Lett; 2009 Nov; 465(2):138-42. PubMed ID: 19733209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.
    Cavaretta JP; Sherer KR; Lee KY; Kim EH; Issema RS; Chung HJ
    PLoS One; 2014; 9(7):e103655. PubMed ID: 25077630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications.
    Hernandez CC; Zaika O; Tolstykh GP; Shapiro MS
    J Physiol; 2008 Apr; 586(7):1811-21. PubMed ID: 18238808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking.
    Choveau FS; Zhang J; Bierbower SM; Sharma R; Shapiro MS
    PLoS One; 2015; 10(12):e0145367. PubMed ID: 26692086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels.
    Gao Z; Xiong Q; Sun H; Li M
    J Biol Chem; 2008 Aug; 283(33):22649-58. PubMed ID: 18490447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels.
    Yus-Najera E; Santana-Castro I; Villarroel A
    J Biol Chem; 2002 Aug; 277(32):28545-53. PubMed ID: 12032157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.
    Schwake M; Athanasiadu D; Beimgraben C; Blanz J; Beck C; Jentsch TJ; Saftig P; Friedrich T
    J Neurosci; 2006 Apr; 26(14):3757-66. PubMed ID: 16597729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic modulation of KCNQ1/KCNE1 K(+) channels (IKs) by phosphatidylinositol 4,5-bisphosphate (PIP2) and [ATP]i.
    Kienitz MC; Vladimirova D
    Cell Signal; 2015 Jul; 27(7):1457-68. PubMed ID: 25892084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels.
    Inanobe A; Tsuzuki C; Kurachi Y
    Cell Physiol Biochem; 2015; 36(5):1847-61. PubMed ID: 26184980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin.
    Chaudhury S; Bal M; Belugin S; Shapiro MS; Jeske NA
    Mol Pain; 2011 May; 7():34. PubMed ID: 21569553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PIP(2)-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP(2) depletion by Gq-coupled receptors in single living neurons.
    Hughes S; Marsh SJ; Tinker A; Brown DA
    Pflugers Arch; 2007 Oct; 455(1):115-24. PubMed ID: 17447081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The specific slow afterhyperpolarization inhibitor UCL2077 is a subtype-selective blocker of the epilepsy associated KCNQ channels.
    Soh H; Tzingounis AV
    Mol Pharmacol; 2010 Dec; 78(6):1088-95. PubMed ID: 20843955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AKAP79 modulation of L-type channels involves disruption of intramolecular interactions in the CaV1.2 subunit.
    Altier C; Dubel SJ; Barrere C; Jarvis SE; Stotz SC; Scott JD; Nargeot J; Zamponi GW; Bourinet E
    Channels (Austin); 2012; 6(3):157-65. PubMed ID: 22677788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers.
    Xiong Q; Sun H; Zhang Y; Nan F; Li M
    Proc Natl Acad Sci U S A; 2008 Feb; 105(8):3128-33. PubMed ID: 18272489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels.
    Wen H; Levitan IB
    J Neurosci; 2002 Sep; 22(18):7991-8001. PubMed ID: 12223552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Channel-anchored protein kinase CK2 and protein phosphatase 1 reciprocally regulate KCNQ2-containing M-channels via phosphorylation of calmodulin.
    Kang S; Xu M; Cooper EC; Hoshi N
    J Biol Chem; 2014 Apr; 289(16):11536-11544. PubMed ID: 24627475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging kinase--AKAP79--phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy.
    Oliveria SF; Gomez LL; Dell'Acqua ML
    J Cell Biol; 2003 Jan; 160(1):101-12. PubMed ID: 12507994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.