These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20148351)

  • 1. SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion.
    Mingossi FB; Matos JL; Rizzato AP; Medeiros AH; Falco MC; Silva-Filho MC; Moura DS
    Plant Mol Biol; 2010 Jun; 73(3):271-81. PubMed ID: 20148351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.
    Vicentini R; Felix Jde M; Dornelas MC; Menossi M
    Plant Cell Rep; 2009 Mar; 28(3):481-91. PubMed ID: 19096852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the RALF family: a tale of many species.
    Murphy E; De Smet I
    Trends Plant Sci; 2014 Oct; 19(10):664-71. PubMed ID: 24999241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid alkalinization factors in poplar cell cultures. Peptide isolation, cDNA cloning, and differential expression in leaves and methyl jasmonate-treated cells.
    Haruta M; Constabel CP
    Plant Physiol; 2003 Feb; 131(2):814-23. PubMed ID: 12586905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses.
    Jin-Long G; Li-Ping X; Jing-Ping F; Ya-Chun S; Hua-Ying F; You-Xiong Q; Jing-Sheng X
    Plant Cell Rep; 2012 Oct; 31(10):1801-12. PubMed ID: 22696141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco.
    Phan TT; Sun B; Niu JQ; Tan QL; Li J; Yang LT; Li YR
    Plant Cell Rep; 2016 Sep; 35(9):1891-905. PubMed ID: 27316630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides.
    Thynne E; Saur IML; Simbaqueba J; Ogilvie HA; Gonzalez-Cendales Y; Mead O; Taranto A; Catanzariti AM; McDonald MC; Schwessinger B; Jones DA; Rathjen JP; Solomon PS
    Mol Plant Pathol; 2017 Aug; 18(6):811-824. PubMed ID: 27291634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack.
    Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y
    BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts.
    Calsa T; Figueira A
    Plant Mol Biol; 2007 Apr; 63(6):745-62. PubMed ID: 17211512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction.
    Holk A; Rietz S; Zahn M; Quader H; Scherer GF
    Plant Physiol; 2002 Sep; 130(1):90-101. PubMed ID: 12226489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ScMat1, a putative TFIIH subunit from sugarcane.
    Gentile A; Ditt RF; Dias FO; Da Silva MJ; Dornelas MC; Menossi M
    Plant Cell Rep; 2009 Apr; 28(4):663-72. PubMed ID: 19148648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions.
    Snyman SJ; Hajari E; Watt MP; Lu Y; Kridl JC
    Plant Cell Rep; 2015 May; 34(5):667-9. PubMed ID: 25686580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis.
    Morato do Canto A; Ceciliato PH; Ribeiro B; Ortiz Morea FA; Franco Garcia AA; Silva-Filho MC; Moura DS
    Plant Physiol Biochem; 2014 Feb; 75():45-54. PubMed ID: 24368323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes responsive to the application of ethanol on sugarcane leaves.
    Camargo SR; Cançado GM; Ulian EC; Menossi M
    Plant Cell Rep; 2007 Dec; 26(12):2119-28. PubMed ID: 17701412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced aluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp.
    Ribeiro AP; Vinecky F; Duarte KE; Santiago TR; das Chagas Noqueli Casari RA; Hell AF; da Cunha BADB; Martins PK; da Cruz Centeno D; de Oliveira Molinari PA; de Almeida Cançado GM; Magalhães JV; Kobayashi AK; de Souza WR; Molinari HBC
    BMC Plant Biol; 2021 Jun; 21(1):300. PubMed ID: 34187360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.).
    Li M; Liang Z; Zeng Y; Jing Y; Wu K; Liang J; He S; Wang G; Mo Z; Tan F; Li S; Wang L
    BMC Genomics; 2016 Mar; 17():195. PubMed ID: 26946183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of silicon transporter gene family in Saccharum and functional analysis of the ShLsi6 gene in biotic stress.
    Cen G; Sun T; Chen Y; Wang W; Feng A; Liu A; Que Y; Gao S; Su Y; You C
    Gene; 2022 May; 822():146331. PubMed ID: 35183686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families.
    Casu RE; Rae AL; Nielsen JM; Perroux JM; Bonnett GD; Manners JM
    Plant Mol Biol; 2015 Dec; 89(6):607-28. PubMed ID: 26456093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of BrMORN, a novel 'membrane occupation and recognition nexus' motif protein gene from Chinese cabbage, promotes vegetative growth and seed production in Arabidopsis.
    Lee J; Han CT; Hur Y
    Mol Cells; 2010 Feb; 29(2):113-22. PubMed ID: 20016940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis.
    Gnanasambandam A; Birch RG
    Plant Cell Rep; 2004 Dec; 23(7):435-47. PubMed ID: 15372194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.