These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20148411)

  • 1. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cybernetic models based on lumped elementary modes accurately predict strain-specific metabolic function.
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2011 Jan; 108(1):127-40. PubMed ID: 20830732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose.
    Song HS; Morgan JA; Ramkrishna D
    Biotechnol Bioeng; 2009 Aug; 103(5):984-1002. PubMed ID: 19449391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control.
    Young JD; Henne KL; Morgan JA; Konopka AE; Ramkrishna D
    Biotechnol Bioeng; 2008 Jun; 100(3):542-59. PubMed ID: 18438875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Modeling of CHO Cell Metabolism Using the Hybrid Cybernetic Approach With a Novel Elementary Mode Analysis Strategy.
    Martínez JA; Bulté DB; Contreras MA; Palomares LA; Ramírez OT
    Front Bioeng Biotechnol; 2020; 8():279. PubMed ID: 32351947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.
    Geng J; Yuan J
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):665-74. PubMed ID: 19543751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the matching and proportional laws of cybernetic models.
    Young JD; Ramkrishna D
    Biotechnol Prog; 2007; 23(1):83-99. PubMed ID: 17269675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2010 Aug; 110(2):254-61. PubMed ID: 20547341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries.
    Varner J; Ramkrishna D
    Biotechnol Prog; 1999 May; 15(3):407-25. PubMed ID: 10356258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of dynamic metabolic behavior of Pediococcus pentosaceus producing lactic acid from lignocellulosic sugars.
    Adler P; Song HS; Kästner K; Ramkrishna D; Kunz B
    Biotechnol Prog; 2012; 28(3):623-35. PubMed ID: 22275308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cybernetic model for the growth of Saccharomyces cerevisiae on melibiose.
    Gadgil CJ; Bhat PJ; Venkatesh KV
    Biotechnol Prog; 1996; 12(6):744-50. PubMed ID: 8983203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles.
    Klitgord N; Segrè D
    Genome Inform; 2010 Jan; 22():41-55. PubMed ID: 20238418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis.
    Jouhten P; Wiebe M; Penttilä M
    FEBS J; 2012 Sep; 279(18):3338-54. PubMed ID: 22672422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling steady-state multiplicity in hybridoma cultures: the cybernetic approach.
    Namjoshi AA; Hu WS; Ramkrishna D
    Biotechnol Bioeng; 2003 Jan; 81(1):80-91. PubMed ID: 12432584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.