BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 20148416)

  • 1. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development.
    Altomare L; Gadegaard N; Visai L; Tanzi MC; Farè S
    Acta Biomater; 2010 Jun; 6(6):1948-57. PubMed ID: 20040385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials.
    Palamà IE; Coluccia AM; Gigli G; Riehle M
    Integr Biol (Camb); 2012 Oct; 4(10):1299-309. PubMed ID: 22899167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct.
    Shah R; Sinanan AC; Knowles JC; Hunt NP; Lewis MP
    Biomaterials; 2005 May; 26(13):1497-505. PubMed ID: 15522751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotopographical guidance of C6 glioma cell alignment and oriented growth.
    Zhu B; Zhang Q; Lu Q; Xu Y; Yin J; Hu J; Wang Z
    Biomaterials; 2004 Aug; 25(18):4215-23. PubMed ID: 15046911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene.
    Rebollar E; Frischauf I; Olbrich M; Peterbauer T; Hering S; Preiner J; Hinterdorfer P; Romanin C; Heitz J
    Biomaterials; 2008 Apr; 29(12):1796-806. PubMed ID: 18237776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions.
    Yang JY; Ting YC; Lai JY; Liu HL; Fang HW; Tsai WB
    J Biomed Mater Res A; 2009 Sep; 90(3):629-40. PubMed ID: 18563818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata.
    Tsai WB; Lin JH
    Acta Biomater; 2009 Jun; 5(5):1442-54. PubMed ID: 19201667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion.
    Loesberg WA; te Riet J; van Delft FC; Schön P; Figdor CG; Speller S; van Loon JJ; Walboomers XF; Jansen JA
    Biomaterials; 2007 Sep; 28(27):3944-51. PubMed ID: 17576010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.
    Conconi MT; De Coppi P; Bellini S; Zara G; Sabatti M; Marzaro M; Zanon GF; Gamba PG; Parnigotto PP; Nussdorfer GG
    Biomaterials; 2005 May; 26(15):2567-74. PubMed ID: 15585259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components.
    Gilmore KJ; Kita M; Han Y; Gelmi A; Higgins MJ; Moulton SE; Clark GM; Kapsa R; Wallace GG
    Biomaterials; 2009 Oct; 30(29):5292-304. PubMed ID: 19643473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of RGD and grooved topography in the adhesion, morphology, and differentiation of C2C12 skeletal myoblasts.
    Wang PY; Thissen H; Tsai WB
    Biotechnol Bioeng; 2012 Aug; 109(8):2104-15. PubMed ID: 22359221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
    Biela SA; Su Y; Spatz JP; Kemkemer R
    Acta Biomater; 2009 Sep; 5(7):2460-6. PubMed ID: 19410529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis.
    Shimizu K; Fujita H; Nagamori E
    J Biosci Bioeng; 2010 Feb; 109(2):174-8. PubMed ID: 20129103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented Schwann cell growth on microgrooved surfaces.
    Hsu SH; Chen CY; Lu PS; Lai CS; Chen CJ
    Biotechnol Bioeng; 2005 Dec; 92(5):579-88. PubMed ID: 16261633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering.
    Ahmed I; Collins CA; Lewis MP; Olsen I; Knowles JC
    Biomaterials; 2004 Jul; 25(16):3223-32. PubMed ID: 14980417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning the differentiation of C2C12 skeletal myoblasts.
    Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R
    Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.