These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20148574)
1. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B ACS Nano; 2010 Mar; 4(3):1299-304. PubMed ID: 20148574 [TBL] [Abstract][Full Text] [Related]
2. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy. Warner JH Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582 [TBL] [Abstract][Full Text] [Related]
3. Element discrimination in a hexagonal boron nitride nanosheet by aberration corrected transmission electron microscopy. Mitome M; Sawada H; Kondo Y; Tanishiro Y; Takayanagi K Ultramicroscopy; 2012 Nov; 122():6-11. PubMed ID: 22955324 [TBL] [Abstract][Full Text] [Related]
4. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals. Wu YA; Kirkland AI; Schäffel F; Porfyrakis K; Young NP; Briggs GA; Warner JH Nanotechnology; 2011 May; 22(19):195603. PubMed ID: 21430323 [TBL] [Abstract][Full Text] [Related]
5. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution. Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589 [TBL] [Abstract][Full Text] [Related]
6. Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy. Warner JH; Rümmeli MH; Bachmatiuk A; Wilson M; Büchner B ACS Nano; 2010 Jan; 4(1):470-6. PubMed ID: 20020749 [TBL] [Abstract][Full Text] [Related]
7. Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking. Nelson F; Diebold AC; Hull R Microsc Microanal; 2010 Apr; 16(2):194-9. PubMed ID: 20100382 [TBL] [Abstract][Full Text] [Related]
8. Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Qin L; Yu J; Li M; Liu F; Bai X Nanotechnology; 2011 May; 22(21):215602. PubMed ID: 21451227 [TBL] [Abstract][Full Text] [Related]
10. Advantages of aberration correction for HRTEM investigation of complex layer compounds. Spiecker E; Garbrecht M; Jäger W; Tillmann K J Microsc; 2010 Mar; 237(3):341-6. PubMed ID: 20500393 [TBL] [Abstract][Full Text] [Related]
11. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Stolyarova E; Rim KT; Ryu S; Maultzsch J; Kim P; Brus LE; Heinz TF; Hybertsen MS; Flynn GW Proc Natl Acad Sci U S A; 2007 May; 104(22):9209-12. PubMed ID: 17517635 [TBL] [Abstract][Full Text] [Related]
12. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Terauchi M Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665 [TBL] [Abstract][Full Text] [Related]
13. Controlled radiation damage and edge structures in boron nitride membranes. Kim JS; Borisenko KB; Nicolosi V; Kirkland AI ACS Nano; 2011 May; 5(5):3977-86. PubMed ID: 21510623 [TBL] [Abstract][Full Text] [Related]
14. Atomic structures of multi-walled boron nitride nanohorns. Nishiwaki A; Oku T J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i9-14. PubMed ID: 16157650 [TBL] [Abstract][Full Text] [Related]
15. Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Chen JH; Zandbergen HW; Dyck DV Ultramicroscopy; 2004 Jan; 98(2-4):81-97. PubMed ID: 15046789 [TBL] [Abstract][Full Text] [Related]
16. Thickness and rotational effects in simulated HRTEM images of graphene on hexagonal boron nitride. Green AJ; Diebold AC Microsc Microanal; 2014 Dec; 20(6):1753-63. PubMed ID: 25222467 [TBL] [Abstract][Full Text] [Related]
17. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Xu M; Fujita D; Chen H; Hanagata N Nanoscale; 2011 Jul; 3(7):2854-8. PubMed ID: 21611645 [TBL] [Abstract][Full Text] [Related]
18. Functionalization and dispersion of hexagonal boron nitride (h-BN) nanosheets treated with inorganic reagents. Nazarov AS; Demin VN; Grayfer ED; Bulavchenko AI; Arymbaeva AT; Shin HJ; Choi JY; Fedorov VE Chem Asian J; 2012 Mar; 7(3):554-60. PubMed ID: 22238118 [TBL] [Abstract][Full Text] [Related]
19. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. Gibb AL; Alem N; Chen JH; Erickson KJ; Ciston J; Gautam A; Linck M; Zettl A J Am Chem Soc; 2013 May; 135(18):6758-61. PubMed ID: 23550733 [TBL] [Abstract][Full Text] [Related]
20. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. Sutter P; Lahiri J; Albrecht P; Sutter E ACS Nano; 2011 Sep; 5(9):7303-9. PubMed ID: 21793550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]