BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20148587)

  • 1. Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity.
    Xu L; Doubleday CE; Houk KN
    J Am Chem Soc; 2010 Mar; 132(9):3029-37. PubMed ID: 20148587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clear correlation between the diradical character of 1,3-dipoles and their reactivity toward ethylene or acetylene.
    Braida B; Walter C; Engels B; Hiberty PC
    J Am Chem Soc; 2010 Jun; 132(22):7631-7. PubMed ID: 20481497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of 1,3-dipolar cycloaddition reactions of diazonium betaines to acetylene and ethylene: bending vibrations facilitate reaction.
    Xu L; Doubleday CE; Houk KN
    Angew Chem Int Ed Engl; 2009; 48(15):2746-8. PubMed ID: 19235191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of bimolecular reactions of vibrationally highly excited molecules: quasiclassical trajectory studies.
    Bene E; Lendvay G; Póta G
    J Phys Chem A; 2005 Sep; 109(37):8336-40. PubMed ID: 16834224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiclassical trajectory calculations analyzing the role of vibrational and translational energy in the F + CH2D2 reaction.
    Espinosa-García J
    J Chem Phys; 2009 Feb; 130(5):054305. PubMed ID: 19206971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers.
    Osuna S; Houk KN
    Chemistry; 2009 Dec; 15(47):13219-31. PubMed ID: 19876972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes.
    Sun L; Park K; Song K; Setser DW; Hase WL
    J Chem Phys; 2006 Feb; 124(6):64313. PubMed ID: 16483213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio direct dynamics trajectory simulation of C2H5F-->C2H4 + HF product energy partitioning.
    Sun L; Hase WL
    J Chem Phys; 2004 Nov; 121(18):8831-45. PubMed ID: 15527346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-the-fly ab initio trajectory calculations of the dynamics of Cl atom reactions with methane, ethane and methanol.
    Rudić S; Murray C; Harvey JN; Orr-Ewing AJ
    J Chem Phys; 2004 Jan; 120(1):186-98. PubMed ID: 15267276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction.
    Monge-Palacios M; Corchado JC; Espinosa-Garcia J
    Phys Chem Chem Phys; 2012 May; 14(20):7497-508. PubMed ID: 22526719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-transfer and H2-elimination reactions of main-group hydrides EH4- (E = B, Al, Ga) with alcohols.
    Filippov OA; Filin AM; Tsupreva VN; Belkova NV; Lledós A; Ujaque G; Epstein LM; Shubina ES
    Inorg Chem; 2006 Apr; 45(7):3086-96. PubMed ID: 16562965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Zero-Point Vibration and Reactant Attraction in Exothermic Bimolecular Reactions with Submerged Potential Barriers: Theoretical Studies of the R + HBr → RH + Br (R = CH
    Csorba B; Szabó P; Góger S; Lendvay G
    J Phys Chem A; 2021 Sep; 125(38):8386-8396. PubMed ID: 34543008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-state energy and position along the reaction coordinate in an extended activation strain model.
    de Jong GT; Bickelhaupt FM
    Chemphyschem; 2007 Jun; 8(8):1170-81. PubMed ID: 17469091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasiclassical trajectory calculations comparing the reactivity and dynamics of symmetric and asymmetric stretch and the role of the bending mode excitations of methane in the Cl + CH4 reaction.
    Sansón J; Corchado JC; Rangel C; Espinosa-Garcia J
    J Chem Phys; 2006 Feb; 124(7):74312. PubMed ID: 16497041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential energy surface and unimolecular dynamics of stretched n-butane.
    Lourderaj U; McAfee JL; Hase WL
    J Chem Phys; 2008 Sep; 129(9):094701. PubMed ID: 19044880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.
    Wheeler SE; Ess DH; Houk KN
    J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-selected dynamics of the complex-forming bimolecular reaction Cl- +CH3 Cl'-->ClCH3+Cl'-: a four-dimensional quantum scattering study.
    Hennig C; Schmatz S
    J Chem Phys; 2004 Jul; 121(1):220-36. PubMed ID: 15260540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiclassical trajectory calculations of the HO2 + NO reaction on a global potential energy surface.
    Chen C; Shepler BC; Braams BJ; Bowman JM
    Phys Chem Chem Phys; 2009 Jun; 11(23):4722-7. PubMed ID: 19492125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.