These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20148626)

  • 1. Microscale oral delivery devices incorporating nanoparticles.
    Phua K; Leong KW
    Nanomedicine (Lond); 2010 Feb; 5(2):161-3. PubMed ID: 20148626
    [No Abstract]   [Full Text] [Related]  

  • 2. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery.
    Roger E; Lagarce F; Garcion E; Benoit JP
    Nanomedicine (Lond); 2010 Feb; 5(2):287-306. PubMed ID: 20148639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer's patches using fluorescent organosilica particles.
    Awaad A; Nakamura M; Ishimura K
    Nanomedicine; 2012 Jul; 8(5):627-36. PubMed ID: 21889475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs.
    Managuli RS; Raut SY; Reddy MS; Mutalik S
    Expert Opin Drug Deliv; 2018 Aug; 15(8):787-804. PubMed ID: 30025212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer's patch uptake.
    Bachhav SS; Dighe VD; Kotak D; Devarajan PV
    Int J Pharm; 2017 Oct; 532(1):612-622. PubMed ID: 28935258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral bioavailability enhancement of agomelatine by loading into nanostructured lipid carriers: Peyer's patch targeting approach.
    Prajapati JB; Verma SD; Patel AA
    Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):35-38. PubMed ID: 29593392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches.
    Akande J; Yeboah KG; Addo RT; Siddig A; Oettinger CW; D'Souza MJ
    J Microencapsul; 2010; 27(4):325-36. PubMed ID: 20055749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: In vitro, ex vivo, and in vivo investigations.
    Tariq M; Alam MA; Singh AT; Iqbal Z; Panda AK; Talegaonkar S
    Colloids Surf B Biointerfaces; 2015 Apr; 128():448-456. PubMed ID: 25769281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intestinal uptake of particles and the implications for drug and antigen delivery.
    O'Hagan DT
    J Anat; 1996 Dec; 189 ( Pt 3)(Pt 3):477-82. PubMed ID: 8982819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peyer's patch-immunomodulating glucans from sugar cane enhance protective immunity through stimulation of the hemopoietic system.
    Sakai Y; Sato M; Funami Y; Ishiyama A; Hokari R; Iwatsuki M; Nagai T; Otoguro K; Yamada H; Ōmura S; Kiyohara H
    Int J Biol Macromol; 2019 Mar; 124():505-514. PubMed ID: 30471397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1-(4-nitrobenzenesulfonyl)-4-penylpiperazine increases the number of Peyer's patch-associated regenerating crypts in the small intestines after radiation injury.
    Bhat K; Duhachek-Muggy S; Ramanathan R; Saki M; Alli C; Medina P; Damoiseaux R; Whitelegge J; McBride WH; Schaue D; Vlashi E; Pajonk F
    Radiother Oncol; 2019 Mar; 132():8-15. PubMed ID: 30825974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of immunoglobulin A production in Peyer's patches by oral administration of a traditional Chinese medicine, xiao-chai-hu-tang (Shosaiko-to).
    Tauchi Y; Yamada A; Kawakita T; Saito Y; Suzuki A; Yoshikai Y; Nomoto K
    Immunopharmacol Immunotoxicol; 1993; 15(2-3):251-72. PubMed ID: 8349952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Nanomedicines: Obstacles and Advancements.
    Swierczewska M; Crist RM; McNeil SE
    Methods Mol Biol; 2018; 1682():3-16. PubMed ID: 29039088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apical membrane receptors on intestinal M cells: potential targets for vaccine delivery.
    Brayden DJ; Baird AW
    Adv Drug Deliv Rev; 2004 Apr; 56(6):721-6. PubMed ID: 15063586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles.
    Joshi G; Kumar A; Sawant K
    Drug Deliv; 2016 Nov; 23(9):3492-3504. PubMed ID: 27297453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles and microparticles for drug and vaccine delivery.
    Kreuter J
    J Anat; 1996 Dec; 189 ( Pt 3)(Pt 3):503-5. PubMed ID: 8982823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective.
    Hunter AC; Elsom J; Wibroe PP; Moghimi SM
    Nanomedicine; 2012 Sep; 8 Suppl 1():S5-20. PubMed ID: 22846372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles.
    Lanza GM; Winter PM; Caruthers SD; Hughes MS; Cyrus T; Marsh JN; Neubauer AM; Partlow KC; Wickline SA
    Nanomedicine (Lond); 2006 Oct; 1(3):321-9. PubMed ID: 17716162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal.
    Singh G; Pai RS
    Drug Deliv; 2016; 23(2):532-9. PubMed ID: 24963752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nanotechnology in developing new therapies for diseases of the nervous system.
    Jain KK
    Nanomedicine (Lond); 2006 Jun; 1(1):9-12. PubMed ID: 17716203
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.