These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein-only transmission of three yeast prion strains. King CY; Diaz-Avalos R Nature; 2004 Mar; 428(6980):319-23. PubMed ID: 15029195 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of yeast prion aggregates in single living cells. Kawai-Noma S; Ayano S; Pack CG; Kinjo M; Yoshida M; Yasuda K; Taguchi H Genes Cells; 2006 Sep; 11(9):1085-96. PubMed ID: 16923127 [TBL] [Abstract][Full Text] [Related]
4. Conformational diversity in a yeast prion dictates its seeding specificity. Chien P; Weissman JS Nature; 2001 Mar; 410(6825):223-7. PubMed ID: 11242084 [TBL] [Abstract][Full Text] [Related]
5. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion]. Ishikawa T Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880 [TBL] [Abstract][Full Text] [Related]
6. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. DePace AH; Weissman JS Nat Struct Biol; 2002 May; 9(5):389-96. PubMed ID: 11938354 [TBL] [Abstract][Full Text] [Related]
7. The physical basis of how prion conformations determine strain phenotypes. Tanaka M; Collins SR; Toyama BH; Weissman JS Nature; 2006 Aug; 442(7102):585-9. PubMed ID: 16810177 [TBL] [Abstract][Full Text] [Related]
8. Single mother-daughter pair analysis to clarify the diffusion properties of yeast prion Sup35 in guanidine-HCl-treated [PSI] cells. Kawai-Noma S; Pack CG; Tsuji T; Kinjo M; Taguchi H Genes Cells; 2009 Sep; 14(9):1045-54. PubMed ID: 19674118 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Tanaka M; Chien P; Yonekura K; Weissman JS Cell; 2005 Apr; 121(1):49-62. PubMed ID: 15820678 [TBL] [Abstract][Full Text] [Related]
10. Generation of prion transmission barriers by mutational control of amyloid conformations. Chien P; DePace AH; Collins SR; Weissman JS Nature; 2003 Aug; 424(6951):948-51. PubMed ID: 12931190 [TBL] [Abstract][Full Text] [Related]
11. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Kimura Y; Koitabashi S; Kakizuka A; Fujita T Genes Cells; 2004 Aug; 9(8):685-96. PubMed ID: 15298677 [TBL] [Abstract][Full Text] [Related]
12. Conformational variations in an infectious protein determine prion strain differences. Tanaka M; Chien P; Naber N; Cooke R; Weissman JS Nature; 2004 Mar; 428(6980):323-8. PubMed ID: 15029196 [TBL] [Abstract][Full Text] [Related]
13. [Yeast prions, mammalian amyloidoses, and the problem of proteomic networks]. Galkin AP; Mironova LN; Zhuravleva GA; Inge-Vechtomov SG Genetika; 2006 Nov; 42(11):1558-70. PubMed ID: 17163073 [TBL] [Abstract][Full Text] [Related]
14. Transformation of yeast by infectious prion particles. King CY; Wang HL; Chang HY Methods; 2006 May; 39(1):68-71. PubMed ID: 16759879 [TBL] [Abstract][Full Text] [Related]
15. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. Kawai-Noma S; Pack CG; Kojidani T; Asakawa H; Hiraoka Y; Kinjo M; Haraguchi T; Taguchi H; Hirata A J Cell Biol; 2010 Jul; 190(2):223-31. PubMed ID: 20643880 [TBL] [Abstract][Full Text] [Related]
16. Prions: proteins as genes and infectious entities. Wickner RB; Edskes HK; Roberts BT; Baxa U; Pierce MM; Ross ED; Brachmann A Genes Dev; 2004 Mar; 18(5):470-85. PubMed ID: 15037545 [No Abstract] [Full Text] [Related]