These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20149466)
1. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Casado-Martinez MC; Smith BD; Luoma SN; Rainbow PS Aquat Toxicol; 2010 Jun; 98(1):34-43. PubMed ID: 20149466 [TBL] [Abstract][Full Text] [Related]
2. Pathways of trace metal uptake in the lugworm Arenicola marina. Casado-Martinez MC; Smith BD; Delvalls TA; Rainbow PS Aquat Toxicol; 2009 Apr; 92(1):9-17. PubMed ID: 19181398 [TBL] [Abstract][Full Text] [Related]
3. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Casado-Martinez MC; Smith BD; DelValls TA; Luoma SN; Rainbow PS Environ Pollut; 2009 Oct; 157(10):2743-50. PubMed ID: 19482397 [TBL] [Abstract][Full Text] [Related]
4. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water. Baumann Z; Fisher NS Sci Total Environ; 2011 Jun; 409(13):2607-15. PubMed ID: 21481438 [TBL] [Abstract][Full Text] [Related]
5. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana. Kalman J; Smith BD; Bury NR; Rainbow PS Aquat Toxicol; 2014 Sep; 154():121-30. PubMed ID: 24880784 [TBL] [Abstract][Full Text] [Related]
6. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Baumann Z; Fisher NS Environ Toxicol Chem; 2011 Mar; 30(3):747-56. PubMed ID: 21154840 [TBL] [Abstract][Full Text] [Related]
7. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes. Zhang W; Wang WX Sci Total Environ; 2018 Mar; 616-617():594-601. PubMed ID: 29100693 [TBL] [Abstract][Full Text] [Related]
8. Bioaccumulation and effects of metals bound to sediments collected from Gulf of Cádiz (SW Spain) using the polychaete Arenicola marina. Kalman J; Riba I; DelValls A; Blasco J Arch Environ Contam Toxicol; 2012 Jan; 62(1):22-8. PubMed ID: 21468719 [TBL] [Abstract][Full Text] [Related]
9. Is Arenicola marina a suitable test organism to evaluate the bioaccumulation potential of Hg, PAHs and PCBs from dredged sediments? Casado-Martínez MC; Branco V; Vale C; Ferreira AM; Delvalls TA Chemosphere; 2008 Feb; 70(10):1756-65. PubMed ID: 17942140 [TBL] [Abstract][Full Text] [Related]
10. Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model. Kalman J; Smith BD; Riba I; Blasco J; Rainbow PS Mar Environ Res; 2010 Jun; 69(5):363-73. PubMed ID: 20137808 [TBL] [Abstract][Full Text] [Related]
11. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Casado-Martinez MC; Duncan E; Smith BD; Maher WA; Rainbow PS Ecotoxicology; 2012 Mar; 21(2):576-90. PubMed ID: 22083342 [TBL] [Abstract][Full Text] [Related]
12. The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Weston DP; Penry DL; Gulmann LK Arch Environ Contam Toxicol; 2000 May; 38(4):446-54. PubMed ID: 10787095 [TBL] [Abstract][Full Text] [Related]
13. Factors influencing the assimilation of arsenic in a deposit-feeding polychaete. Baumann Z; Koller A; Fisher NS Comp Biochem Physiol C Toxicol Pharmacol; 2012 Jun; 156(1):42-50. PubMed ID: 22507667 [TBL] [Abstract][Full Text] [Related]
14. Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. Lee JH; Birch GF; Cresswell T; Johansen MP; Adams MS; Simpson SL Aquat Toxicol; 2015 Oct; 167():46-54. PubMed ID: 26261879 [TBL] [Abstract][Full Text] [Related]
15. Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula: a biodynamic modeling approach. Awrahman ZA; Rainbow PS; Smith BD; Khan FR; Bury NR; Fialkowski W Aquat Toxicol; 2015 Apr; 161():196-207. PubMed ID: 25710448 [TBL] [Abstract][Full Text] [Related]
16. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment. Janssen EM; Croteau MN; Luoma SN; Luthy RG Environ Sci Technol; 2010 Apr; 44(8):2857-63. PubMed ID: 20384377 [TBL] [Abstract][Full Text] [Related]
17. Using the polychaete Arenicola marina to determine toxicity and bioaccumulation of PAHS bound to sediments. Morales-Caselles C; Ramos J; Riba I; Delvalls TA Environ Monit Assess; 2008 Jul; 142(1-3):219-26. PubMed ID: 17876713 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens. Klosterhaus SL; Dreis E; Baker JE Environ Toxicol Chem; 2011 May; 30(5):1204-12. PubMed ID: 21337608 [TBL] [Abstract][Full Text] [Related]
19. Metal toxicity in a sediment-dwelling polychaete: threshold body concentrations or overwhelming accumulation rates? Carmen Casado-Martinez M; Smith BD; Luoma SN; Rainbow PS Environ Pollut; 2010 Oct; 158(10):3071-6. PubMed ID: 20691520 [TBL] [Abstract][Full Text] [Related]
20. Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data. Méndez-Fernández L; Rodriguez P; Martínez-Madrid M Rev Environ Contam Toxicol; 2017; 243():149-172. PubMed ID: 28204900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]