These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 20149628)
1. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes. Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628 [TBL] [Abstract][Full Text] [Related]
2. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae. Polívka T; Hiller RG; Frank HA Arch Biochem Biophys; 2007 Feb; 458(2):111-20. PubMed ID: 17098207 [TBL] [Abstract][Full Text] [Related]
4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
5. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Mussgnug JH; Thomas-Hall S; Rupprecht J; Foo A; Klassen V; McDowall A; Schenk PM; Kruse O; Hankamer B Plant Biotechnol J; 2007 Nov; 5(6):802-14. PubMed ID: 17764518 [TBL] [Abstract][Full Text] [Related]
6. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency. Koyama Y; Miki T; Wang XF; Nagae H Int J Mol Sci; 2009 Oct; 10(11):4575-4622. PubMed ID: 20087456 [TBL] [Abstract][Full Text] [Related]
7. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. Schlau-Cohen GS; Calhoun TR; Ginsberg NS; Read EL; Ballottari M; Bassi R; van Grondelle R; Fleming GR J Phys Chem B; 2009 Nov; 113(46):15352-63. PubMed ID: 19856954 [TBL] [Abstract][Full Text] [Related]
8. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
9. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Wasielewski MR Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Pascal AA; Liu Z; Broess K; van Oort B; van Amerongen H; Wang C; Horton P; Robert B; Chang W; Ruban A Nature; 2005 Jul; 436(7047):134-7. PubMed ID: 16001075 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
13. Functional architecture of the major light-harvesting complex from higher plants. Formaggio E; Cinque G; Bassi R J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731 [TBL] [Abstract][Full Text] [Related]
14. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
15. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells. Yang Y; Jankowiak R; Lin C; Pawlak K; Reus M; Holzwarth AR; Li J Phys Chem Chem Phys; 2014 Oct; 16(38):20856-65. PubMed ID: 25168759 [TBL] [Abstract][Full Text] [Related]
16. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Hoke ET; Hardin BE; McGehee MD Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400 [TBL] [Abstract][Full Text] [Related]
17. Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. Kargul J; Barber J FEBS J; 2008 Mar; 275(6):1056-68. PubMed ID: 18318833 [TBL] [Abstract][Full Text] [Related]
18. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. Tai Q; Chen B; Guo F; Xu S; Hu H; Sebo B; Zhao XZ ACS Nano; 2011 May; 5(5):3795-9. PubMed ID: 21469717 [TBL] [Abstract][Full Text] [Related]
19. Porphyrin-sensitized solar cells. Li LL; Diau EW Chem Soc Rev; 2013 Jan; 42(1):291-304. PubMed ID: 23023240 [TBL] [Abstract][Full Text] [Related]
20. Light harvesting in photosystem I supercomplexes. Melkozernov AN; Barber J; Blankenship RE Biochemistry; 2006 Jan; 45(2):331-45. PubMed ID: 16401064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]