These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 20149681)
1. Electrohydrodynamics of charge separation in droplet-based ion sources with time-varying electrical and mechanical actuation. Forbes TP; Degertekin FL; Fedorov AG J Am Soc Mass Spectrom; 2010 Apr; 21(4):501-10. PubMed ID: 20149681 [TBL] [Abstract][Full Text] [Related]
2. Characterization of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source for mass spectrometry. Forbes TP; Dixon RB; Muddiman DC; Degertekin FL; Fedorov AG J Am Soc Mass Spectrom; 2009 Sep; 20(9):1684-7. PubMed ID: 19525123 [TBL] [Abstract][Full Text] [Related]
3. Analytical performance of a venturi-assisted array of micromachined ultrasonic electrosprays coupled to ion trap mass spectrometry for the analysis of peptides and proteins. Hampton CY; Forbes TP; Varady MJ; Meacham JM; Fedorov AG; Degertekin FL; Fernández FM Anal Chem; 2007 Nov; 79(21):8154-61. PubMed ID: 17914864 [TBL] [Abstract][Full Text] [Related]
4. Regime transition in electromechanical fluid atomization and implications to analyte ionization for mass spectrometric analysis. Forbes TP; Degertekin FL; Fedorov AG J Am Soc Mass Spectrom; 2010 Nov; 21(11):1900-5. PubMed ID: 20729096 [TBL] [Abstract][Full Text] [Related]
5. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field. Forbes TP; Degertekin FL; Fedorov AG Phys Fluids (1994); 2011 Jan; 23(1):12104. PubMed ID: 21301636 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Ionization and Analyte Charging in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source. Forbes TP; Degertekin FL; Fedorov AG J Electroanal Chem (Lausanne); 2010 Jul; 645(2):167-173. PubMed ID: 20607111 [TBL] [Abstract][Full Text] [Related]
7. Universal cone angle of ac electrosprays due to net charge entrainment. Chetwani N; Maheshwari S; Chang HC Phys Rev Lett; 2008 Nov; 101(20):204501. PubMed ID: 19113344 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. Grimm RL; Beauchamp JL J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963 [TBL] [Abstract][Full Text] [Related]
9. Electrohydrodynamics of Gas-Assisted Electrospray Ionization Mass Spectrometry. Lee JY; Kottke PA; Fedorov AG J Am Soc Mass Spectrom; 2020 Oct; 31(10):2073-2085. PubMed ID: 32869991 [TBL] [Abstract][Full Text] [Related]
10. Spraying mode effect on droplet formation and ion chemistry in electrosprays. Nemes P; Marginean I; Vertes A Anal Chem; 2007 Apr; 79(8):3105-16. PubMed ID: 17378541 [TBL] [Abstract][Full Text] [Related]
11. Charging of molecules during transport. Gohda Y; Pantelides ST Nano Lett; 2005 Jul; 5(7):1217-20. PubMed ID: 16178213 [TBL] [Abstract][Full Text] [Related]
12. Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces. Gambhire P; Thaokar RM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036301. PubMed ID: 23031007 [TBL] [Abstract][Full Text] [Related]
13. Charging of Proteins in Native Mass Spectrometry. Susa AC; Xia Z; Tang HYH; Tainer JA; Williams ER J Am Soc Mass Spectrom; 2017 Feb; 28(2):332-340. PubMed ID: 27734326 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of electrospray in the cone-jet mode. Herrada MA; López-Herrera JM; Gañán-Calvo AM; Vega EJ; Montanero JM; Popinet S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026305. PubMed ID: 23005852 [TBL] [Abstract][Full Text] [Related]
15. Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Im DJ; Noh J; Moon D; Kang IS Anal Chem; 2011 Jul; 83(13):5168-74. PubMed ID: 21627149 [TBL] [Abstract][Full Text] [Related]
16. Simulations of a weakly conducting droplet under the influence of an alternating electric field. Sahu KC; Tripathi MK; Chaudhari J; Chakraborty S Electrophoresis; 2020 Dec; 41(23):1953-1960. PubMed ID: 32776578 [TBL] [Abstract][Full Text] [Related]
17. A simplified electrospray ionization source based on electrostatic field induction for mass spectrometric analysis of droplet samples. Lu X; Chen H; Li X; Chen J; Yang X Analyst; 2012 Dec; 137(24):5743-8. PubMed ID: 23095821 [TBL] [Abstract][Full Text] [Related]
18. General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers. Aramide B; Kothandaraman A; Edirisinghe M; Jayasinghe SN; Ventikos Y Langmuir; 2019 Aug; 35(31):10203-10212. PubMed ID: 30892903 [TBL] [Abstract][Full Text] [Related]
19. In-spray supercharging of peptides and proteins in electrospray ionization mass spectrometry. Miladinović SM; Fornelli L; Lu Y; Piech KM; Girault HH; Tsybin YO Anal Chem; 2012 Jun; 84(11):4647-51. PubMed ID: 22571167 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the internal energy deposition of Venturi-assisted electrospray ionization and a Venturi-assisted array of micromachined ultrasonic electrosprays (AMUSE). Hampton CY; Silvestri CJ; Forbes TP; Varady MJ; Meacham JM; Fedorov AG; Degertekin FL; Fernández FM J Am Soc Mass Spectrom; 2008 Sep; 19(9):1320-9. PubMed ID: 18650100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]