These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20149854)

  • 21. Potassium currents in auditory hair cells of the frog basilar papilla.
    Smotherman MS; Narins PM
    Hear Res; 1999 Jun; 132(1-2):117-30. PubMed ID: 10392554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond the limits: identifying the high-frequency detectors in the anuran ear.
    Cobo-Cuan A; Grafe TU; Narins PM
    Biol Lett; 2020 Jul; 16(7):20200343. PubMed ID: 32603645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua.
    Manley GA; Yates GK; Köppl C
    Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electrical tuning mechanism in turtle cochlear hair cells.
    Crawford AC; Fettiplace R
    J Physiol; 1981 Mar; 312():377-412. PubMed ID: 7265000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the frog amphibian papilla.
    Lewis ER
    Scan Electron Microsc; 1984; (Pt 4):1899-913. PubMed ID: 6523060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory capabilities of birds in relation to the structural diversity of the basilar papilla.
    Gleich O; Langemann U
    Hear Res; 2011 Mar; 273(1-2):80-8. PubMed ID: 20116420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity of form in the amphibian papilla of Puerto Rican frogs.
    Lewis ER; Hecht EI; Narins PM
    J Comp Physiol A; 1992 Nov; 171(4):421-35. PubMed ID: 1469663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DC injection alters spontaneous otoacoustic emission frequency in the frog.
    Wit HP; van Dijk P; Segenhout JM
    Hear Res; 1989 Sep; 41(2-3):199-204. PubMed ID: 2478517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electrical properties of auditory hair cells in the frog amphibian papilla.
    Smotherman MS; Narins PM
    J Neurosci; 1999 Jul; 19(13):5275-92. PubMed ID: 10377339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization.
    Corfield JR; Kubke MF; Parsons S; Köppl C
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):629-39. PubMed ID: 22772440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear.
    Reng D; Müller M; Smolders JW
    Audiol Neurootol; 2001; 6(2):66-78. PubMed ID: 11385180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians.
    Hillery CM; Narins PM
    Hear Res; 1987; 25(2-3):233-48. PubMed ID: 3558132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Making an effort to listen: mechanical amplification in the ear.
    Hudspeth AJ
    Neuron; 2008 Aug; 59(4):530-45. PubMed ID: 18760690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inner ear morphological correlates of ultrasonic hearing in frogs.
    Arch VS; Simmons DD; Quiñones PM; Feng AS; Jiang J; Stuart BL; Shen JX; Blair C; Narins PM
    Hear Res; 2012 Jan; 283(1-2):70-9. PubMed ID: 22146424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BK Channels in the Vertebrate Inner Ear.
    Pyott SJ; Duncan RK
    Int Rev Neurobiol; 2016; 128():369-99. PubMed ID: 27238269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of reception with the use of focused ultrasound. II. Effects on the animal receptor structures.
    Gavrilov LR; Gersuni GV; Ilyinsky OB; Tsirulnikov EM; Shchekanov EE
    Brain Res; 1977 Oct; 135(2):279-85. PubMed ID: 922477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.