These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20149854)

  • 41. Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures.
    White JS; Baird IL
    Scan Electron Microsc; 1982; 3():1301-12. PubMed ID: 7185152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional recovery in the avian ear after hair cell regeneration.
    Smolders JW
    Audiol Neurootol; 1999; 4(6):286-302. PubMed ID: 10516389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Is the presence of transient evoked otoacoustic emmissions in ears with acoustic neuroma significant?
    Ferber-Viart C; Colleaux B; Laoust L; Dubreuil C; Duclaux R
    Laryngoscope; 1998 Apr; 108(4 Pt 1):605-9. PubMed ID: 9546278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana).
    Purgue AP; Narins PM
    J Comp Physiol A; 2000 May; 186(5):489-95. PubMed ID: 10879951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C; Shera CA
    J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A ratchet mechanism for amplification in low-frequency mammalian hearing.
    Reichenbach T; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4973-8. PubMed ID: 20194771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vertebrate pressure-gradient receivers.
    Christensen-Dalsgaard J
    Hear Res; 2011 Mar; 273(1-2):37-45. PubMed ID: 20727396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Otoacoustic emissions from insect ears: evidence of active hearing?
    Kössl M; Möckel D; Weber M; Seyfarth EA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):597-609. PubMed ID: 18516607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of basilar membrane vibrations and evaluation of the cochlear condition.
    Khanna SM; Leonard DG
    Hear Res; 1986; 23(1):37-53. PubMed ID: 3733551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Frequency tuning in a frog vestibular organ.
    Ashmore JF
    Nature; 1983 Aug 11-17; 304(5926):536-8. PubMed ID: 6603578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Developing Concept of Tonotopic Organization of the Inner Ear.
    Ruben RJ
    J Assoc Res Otolaryngol; 2020 Feb; 21(1):1-20. PubMed ID: 32020418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Basilar membrane measurements and the travelling wave.
    Johnstone BM; Patuzzi R; Yates GK
    Hear Res; 1986; 22():147-53. PubMed ID: 3733536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How minute sooglossid frogs hear without a middle ear.
    Boistel R; Aubin T; Cloetens P; Peyrin F; Scotti T; Herzog P; Gerlach J; Pollet N; Aubry JF
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15360-4. PubMed ID: 24003145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The study of evoked otoacoustic emissions in children].
    Caballero Mallea J; Marco Algarra J; Mallea Cañizares I; Morant Ventura A
    Acta Otorrinolaringol Esp; 1994; 45(1):13-8. PubMed ID: 8204288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.