These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 20149875)
1. The effects of PKCalpha phosphorylation on the extensibility of titin's PEVK element. Anderson BR; Bogomolovas J; Labeit S; Granzier H J Struct Biol; 2010 May; 170(2):270-7. PubMed ID: 20149875 [TBL] [Abstract][Full Text] [Related]
2. PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Hidalgo C; Hudson B; Bogomolovas J; Zhu Y; Anderson B; Greaser M; Labeit S; Granzier H Circ Res; 2009 Sep; 105(7):631-8, 17 p following 638. PubMed ID: 19679839 [TBL] [Abstract][Full Text] [Related]
3. Excision of titin's cardiac PEVK spring element abolishes PKCalpha-induced increases in myocardial stiffness. Hudson BD; Hidalgo CG; Gotthardt M; Granzier HL J Mol Cell Cardiol; 2010 May; 48(5):972-8. PubMed ID: 20026128 [TBL] [Abstract][Full Text] [Related]
4. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of titin isoforms. Granzier H; Helmes M; Cazorla O; McNabb M; Labeit D; Wu Y; Yamasaki R; Redkar A; Kellermayer M; Labeit S; Trombitás K Adv Exp Med Biol; 2000; 481():283-300; discussion 300-4. PubMed ID: 10987079 [TBL] [Abstract][Full Text] [Related]
6. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Trombitás K; Redkar A; Centner T; Wu Y; Labeit S; Granzier H Biophys J; 2000 Dec; 79(6):3226-34. PubMed ID: 11106626 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanics of cardiac titin's PEVK and N2B spring elements. Watanabe K; Nair P; Labeit D; Kellermayer MS; Greaser M; Labeit S; Granzier H J Biol Chem; 2002 Mar; 277(13):11549-58. PubMed ID: 11799131 [TBL] [Abstract][Full Text] [Related]
8. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. Trombitás K; Greaser M; Labeit S; Jin JP; Kellermayer M; Helmes M; Granzier H J Cell Biol; 1998 Feb; 140(4):853-9. PubMed ID: 9472037 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy. Leake MC; Grützner A; Krüger M; Linke WA J Struct Biol; 2006 Aug; 155(2):263-72. PubMed ID: 16682230 [TBL] [Abstract][Full Text] [Related]
11. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. Linke WA; Rudy DE; Centner T; Gautel M; Witt C; Labeit S; Gregorio CC J Cell Biol; 1999 Aug; 146(3):631-44. PubMed ID: 10444071 [TBL] [Abstract][Full Text] [Related]
12. Titin elasticity in the context of the sarcomere: force and extensibility measurements on single myofibrils. Linke WA Adv Exp Med Biol; 2000; 481():179-202; discussion 203-6. PubMed ID: 10987073 [TBL] [Abstract][Full Text] [Related]
13. Towards a molecular understanding of the elasticity of titin. Linke WA; Ivemeyer M; Olivieri N; Kolmerer B; Rüegg JC; Labeit S J Mol Biol; 1996 Aug; 261(1):62-71. PubMed ID: 8760502 [TBL] [Abstract][Full Text] [Related]
14. Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Granzier HL; Radke MH; Peng J; Westermann D; Nelson OL; Rost K; King NM; Yu Q; Tschöpe C; McNabb M; Larson DF; Labeit S; Gotthardt M Circ Res; 2009 Sep; 105(6):557-64. PubMed ID: 19679835 [TBL] [Abstract][Full Text] [Related]
15. Adaptations in titin's spring elements in normal and cardiomyopathic hearts. Granzier H; Labeit D; Wu Y; Witt C; Watanabe K; Lahmers S; Gotthardt M; Labeit S Adv Exp Med Biol; 2003; 538():517-30; discussion 530-1. PubMed ID: 15098695 [TBL] [Abstract][Full Text] [Related]
16. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Grützner A; Garcia-Manyes S; Kötter S; Badilla CL; Fernandez JM; Linke WA Biophys J; 2009 Aug; 97(3):825-34. PubMed ID: 19651040 [TBL] [Abstract][Full Text] [Related]
17. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Yamasaki R; Berri M; Wu Y; Trombitás K; McNabb M; Kellermayer MS; Witt C; Labeit D; Labeit S; Greaser M; Granzier H Biophys J; 2001 Oct; 81(4):2297-313. PubMed ID: 11566799 [TBL] [Abstract][Full Text] [Related]
18. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Krüger M; Kötter S; Grützner A; Lang P; Andresen C; Redfield MM; Butt E; dos Remedios CG; Linke WA Circ Res; 2009 Jan; 104(1):87-94. PubMed ID: 19023132 [TBL] [Abstract][Full Text] [Related]
19. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy. Sarkar A; Caamano S; Fernandez JM J Biol Chem; 2005 Feb; 280(8):6261-4. PubMed ID: 15632200 [TBL] [Abstract][Full Text] [Related]
20. Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. Granzier H; Labeit D; Wu Y; Labeit S J Muscle Res Cell Motil; 2002; 23(5-6):457-71. PubMed ID: 12785097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]