These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20149886)

  • 1. Near-isometric flattening of brain surfaces.
    Balasubramanian M; Polimeni JR; Schwartz EL
    Neuroimage; 2010 Jun; 51(2):694-703. PubMed ID: 20149886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Area-preserving surface flattening using Lie advection.
    Zou G; Hu J; Gu X; Hua J
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):335-42. PubMed ID: 21995046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flat map areal topography in Macaca mulatta based on combined MRI and histology.
    Sultan F; Hamodeh S; Murayama Y; Saleem KS; Logothetis N
    Magn Reson Imaging; 2010 Oct; 28(8):1159-64. PubMed ID: 20471190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete conformal methods for cortical brain flattening.
    Hurdal MK; Stephenson K
    Neuroimage; 2009 Mar; 45(1 Suppl):S86-98. PubMed ID: 19049882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system.
    Drury HA; Van Essen DC; Anderson CH; Lee CW; Coogan TA; Lewis JW
    J Cogn Neurosci; 1996; 8(1):1-28. PubMed ID: 11539144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for reconstructing and unfolding the cerebral cortex.
    Carman GJ; Drury HA; Van Essen DC
    Cereb Cortex; 1995; 5(6):506-17. PubMed ID: 8590824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning and comparing spatial normalization methods.
    Robbins S; Evans AC; Collins DL; Whitesides S
    Med Image Anal; 2004 Sep; 8(3):311-23. PubMed ID: 15450225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative architectural analysis: a new approach to cortical mapping.
    Schleicher A; Palomero-Gallagher N; Morosan P; Eickhoff SB; Kowalski T; de Vos K; Amunts K; Zilles K
    Anat Embryol (Berl); 2005 Dec; 210(5-6):373-86. PubMed ID: 16249867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network.
    Sun L; Zhang D; Lian C; Wang L; Wu Z; Shao W; Lin W; Shen D; Li G;
    Neuroimage; 2019 Sep; 198():114-124. PubMed ID: 31112785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of three cortical surface flattening methods.
    Ju L; Hurdal MK; Stern J; Rehm K; Schaper K; Rottenberg D
    Neuroimage; 2005 Dec; 28(4):869-80. PubMed ID: 16112878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact geodesics and shortest paths on polyhedral surfaces.
    Balasubramanian M; Polimeni JR; Schwartz EL
    IEEE Trans Pattern Anal Mach Intell; 2009 Jun; 31(6):1006-16. PubMed ID: 19372606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring brain connectivity with two-dimensional neural maps.
    Jianu R; Demiralp Ç; Laidlaw DH
    IEEE Trans Vis Comput Graph; 2012 Jun; 18(6):978-87. PubMed ID: 21519105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIKA-Nets: Domain-invariant knowledge-guided attention networks for brain skull stripping of early developing macaques.
    Zhong T; Zhao F; Pei Y; Ning Z; Liao L; Wu Z; Niu Y; Wang L; Shen D; Zhang Y; Li G
    Neuroimage; 2021 Feb; 227():117649. PubMed ID: 33338616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRUISE: cortical reconstruction using implicit surface evolution.
    Han X; Pham DL; Tosun D; Rettmann ME; Xu C; Prince JL
    Neuroimage; 2004 Nov; 23(3):997-1012. PubMed ID: 15528100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texturing 3D-reconstructions of the human brain with EEG-activity maps.
    Dimitrov LI
    Hum Brain Mapp; 1998; 6(4):189-202. PubMed ID: 9704260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR-guided joint reconstruction of activity and attenuation in brain PET-MR.
    Mehranian A; Zaidi H; Reader AJ
    Neuroimage; 2017 Nov; 162():276-288. PubMed ID: 28918316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical surface segmentation and mapping.
    Tosun D; Rettmann ME; Han X; Tao X; Xu C; Resnick SM; Pham DL; Prince JL
    Neuroimage; 2004; 23 Suppl 1(0 1):S108-18. PubMed ID: 15501080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curve matching on brain surfaces using Frenet distances.
    Bakircioğlu M; Grenander U; Khaneja N; Miller MI
    Hum Brain Mapp; 1998; 6(5-6):329-33. PubMed ID: 9788068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer's disease.
    Acosta O; Fripp J; Doré V; Bourgeat P; Favreau JM; Chételat G; Rueda A; Villemagne VL; Szoeke C; Ames D; Ellis KA; Martins RN; Masters CL; Rowe CC; Bonner E; Gris F; Xiao D; Raniga P; Barra V; Salvado O
    J Neurosci Methods; 2012 Mar; 205(1):96-109. PubMed ID: 22226742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic localization of brain activation in diffuse optical imaging using spherical wavelets.
    Abdelnour F; Schmidt B; Huppert TJ
    Phys Med Biol; 2009 Oct; 54(20):6383-413. PubMed ID: 19809125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.