These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20149895)

  • 1. Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication.
    Eberhard MJ; Lang D; Metscher B; Pass G; Picker MD; Wolf H
    Arthropod Struct Dev; 2010 Jul; 39(4):230-41. PubMed ID: 20149895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ.
    Strauß J; Lakes-Harlan R
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():100-108. PubMed ID: 27614184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex.
    Strauß J; Lakes-Harlan R
    J Comp Neurol; 2013 Nov; 521(16):3791-803. PubMed ID: 23749306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae).
    Alt JA; Lakes-Harlan R
    J Insect Sci; 2018 May; 18(3):. PubMed ID: 29893892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal Regression of Internal Leg Vibroreceptor Organs in a Cave-Dwelling Insect (Orthoptera: Rhaphidophoridae: Dolichopoda araneiformis).
    Strauß J; Stritih N
    Brain Behav Evol; 2017; 89(2):104-116. PubMed ID: 28407636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication with substrate-borne signals in small plant-dwelling insects.
    Cokl A; Virant-Doberlet M
    Annu Rev Entomol; 2003; 48():29-50. PubMed ID: 12414736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency vibration transmission and mechanosensory detection in the legs of cave crickets.
    Stritih-Peljhan N; Rühr PT; Buh B; Strauß J
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():89-96. PubMed ID: 30978469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.).
    Zorović M; Presern J; Cokl A
    J Comp Neurol; 2008 May; 508(2):365-81. PubMed ID: 18335563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The scolopidial accessory organs and Nebenorgans in orthopteroid insects: Comparative neuroanatomy, mechanosensory function, and evolutionary origin.
    Strauß J
    Arthropod Struct Dev; 2017 Nov; 46(6):765-776. PubMed ID: 28864301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many mechanosensory organs in the bushcricket leg? Neuroanatomy of the scolopidial accessory organ in Tettigoniidae (Insecta: Orthoptera).
    Strauß J; Riesterer AS; Lakes-Harlan R
    Arthropod Struct Dev; 2016 Jan; 45(1):31-41. PubMed ID: 26627978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of the arolium of Mantophasmatodea (Insecta).
    Eberhard MJ; Pass G; Picker MD; Beutel R; Predel R; Gorb SN
    J Morphol; 2009 Oct; 270(10):1247-61. PubMed ID: 19434717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The scolopidial accessory organ in the Jerusalem cricket (Orthoptera: Stenopelmatidae).
    Strauß J
    Arthropod Struct Dev; 2017 Mar; 46(2):171-177. PubMed ID: 27998741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications.
    Strauss J; Lakes-Harlan R
    Brain Behav Evol; 2008; 71(3):167-80. PubMed ID: 18230969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure and function of auditory chordotonal organs in insects.
    Yack JE
    Microsc Res Tech; 2004 Apr; 63(6):315-37. PubMed ID: 15252876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ.
    Nishino H; Field LH
    J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae).
    Perez Goodwyn P; Katsumata-Wada A; Okada K
    J Insect Physiol; 2009 Sep; 55(9):855-61. PubMed ID: 19523956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana.
    Watanabe H; Shimohigashi M; Yokohari F
    J Comp Neurol; 2014 Feb; 522(2):414-34. PubMed ID: 23852943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-evaluation of the absolute threshold and response mode of the most sensitive known "vibration" detector, the cockroach's subgenual organ: a cochlea-like displacement threshold and a direct response to sound.
    Shaw SR
    J Neurobiol; 1994 Sep; 25(9):1167-85. PubMed ID: 7815071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection.
    Strauß J; Lomas K; Field LH
    Sci Rep; 2017 May; 7(1):2031. PubMed ID: 28515484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.