These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 20149926)
1. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Ercan B; Webster TJ Biomaterials; 2010 May; 31(13):3684-93. PubMed ID: 20149926 [TBL] [Abstract][Full Text] [Related]
2. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Yao C; Slamovich EB; Webster TJ J Biomed Mater Res A; 2008 Apr; 85(1):157-66. PubMed ID: 17688267 [TBL] [Abstract][Full Text] [Related]
3. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Ercan B; Webster TJ Int J Nanomedicine; 2008; 3(4):477-85. PubMed ID: 19337416 [TBL] [Abstract][Full Text] [Related]
4. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Ercan B; Kummer KM; Tarquinio KM; Webster TJ Acta Biomater; 2011 Jul; 7(7):3003-12. PubMed ID: 21515421 [TBL] [Abstract][Full Text] [Related]
5. Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study. Balasundaram G; Shimpi TM; Sanow WR; Storey DM; Kitchell BS; Webster TJ J Biomed Mater Res A; 2011 Aug; 98(2):192-200. PubMed ID: 21548070 [TBL] [Abstract][Full Text] [Related]
6. Influence of engineered titania nanotubular surfaces on bone cells. Popat KC; Leoni L; Grimes CA; Desai TA Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092 [TBL] [Abstract][Full Text] [Related]
7. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Sista S; Nouri A; Li Y; Wen C; Hodgson PD; Pande G J Biomed Mater Res A; 2013 Dec; 101(12):3416-30. PubMed ID: 23559548 [TBL] [Abstract][Full Text] [Related]
8. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Zhao L; Mei S; Chu PK; Zhang Y; Wu Z Biomaterials; 2010 Jul; 31(19):5072-82. PubMed ID: 20362328 [TBL] [Abstract][Full Text] [Related]
9. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. Rodriguez R; Kim K; Ong JL J Biomed Mater Res A; 2003 Jun; 65(3):352-8. PubMed ID: 12746882 [TBL] [Abstract][Full Text] [Related]
10. The impact of diamond nanocrystallinity on osteoblast functions. Yang L; Sheldon BW; Webster TJ Biomaterials; 2009 Jul; 30(20):3458-65. PubMed ID: 19339049 [TBL] [Abstract][Full Text] [Related]
11. Increased chondrocyte adhesion on nanotubular anodized titanium. Burns K; Yao C; Webster TJ J Biomed Mater Res A; 2009 Mar; 88(3):561-8. PubMed ID: 18306319 [TBL] [Abstract][Full Text] [Related]
12. Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. Reising A; Yao C; Storey D; Webster TJ J Biomed Mater Res A; 2008 Oct; 87(1):78-83. PubMed ID: 18085656 [TBL] [Abstract][Full Text] [Related]
13. Osteoblast activity on anodized titania nanotubes: effect of simulated body fluid soaking time. Bayram C; Demirbilek M; Calişkan N; Demirbilek ME; Denkbaş EB J Biomed Nanotechnol; 2012 Jun; 8(3):482-90. PubMed ID: 22764418 [TBL] [Abstract][Full Text] [Related]
14. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. Yu WQ; Jiang XQ; Zhang FQ; Xu L J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968 [TBL] [Abstract][Full Text] [Related]
15. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Webster TJ; Ejiofor JU Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the cytocompatibility of different coated titanium surfaces to fibroblasts and osteoblasts. Harris LG; Patterson LM; Bacon C; Gwynn Ia; Richards RG J Biomed Mater Res A; 2005 Apr; 73(1):12-20. PubMed ID: 15704113 [TBL] [Abstract][Full Text] [Related]
17. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Sirivisoot S; Pareta R; Webster TJ Nanotechnology; 2011 Feb; 22(8):085101. PubMed ID: 21242621 [TBL] [Abstract][Full Text] [Related]
18. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. Cai K; Hu Y; Jandt KD J Biomed Mater Res A; 2007 Sep; 82(4):927-35. PubMed ID: 17335030 [TBL] [Abstract][Full Text] [Related]
19. Suppressed primary osteoblast functions on nanoporous titania surface. Zhao L; Mei S; Wang W; Chu PK; Zhang Y; Wu Z J Biomed Mater Res A; 2011 Jan; 96(1):100-7. PubMed ID: 21105157 [TBL] [Abstract][Full Text] [Related]
20. Surface modifications and cell-materials interactions with anodized Ti. Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]