These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20150125)

  • 1. Fluorescence in situ hybridization for the identification of environmental microbes.
    Wendeberg A
    Cold Spring Harb Protoc; 2010 Jan; 2010(1):pdb.prot5366. PubMed ID: 20150125
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH).
    Crocetti G; Murto M; Björnsson L
    J Microbiol Methods; 2006 Apr; 65(1):194-201. PubMed ID: 16126291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays.
    Wagner M; Nielsen PH; Loy A; Nielsen JL; Daims H
    Curr Opin Biotechnol; 2006 Feb; 17(1):83-91. PubMed ID: 16377170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions.
    Li T; Mazéas L; Sghir A; Leblon G; Bouchez T
    Environ Microbiol; 2009 Apr; 11(4):889-904. PubMed ID: 19128320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous fluorescence in situ hybridization of mRNA and rRNA for the detection of gene expression in environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Enzymol; 2005; 397():352-71. PubMed ID: 16260302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Estimation of the phylogenetic diversity of prokaryotic microorganisms in Sphagnum bogs with the use of fluorescence in situ hybridization (FISH)].
    Pankratov TA; Belova SE; Dedysh SN
    Mikrobiologiia; 2005; 74(6):831-7. PubMed ID: 16400995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility.
    Stoecker K; Dorninger C; Daims H; Wagner M
    Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS).
    Dekas AE; Orphan VJ
    Methods Enzymol; 2011; 486():281-305. PubMed ID: 21185440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean.
    Teira E; Reinthaler T; Pernthaler A; Pernthaler J; Herndl GJ
    Appl Environ Microbiol; 2004 Jul; 70(7):4411-4. PubMed ID: 15240332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Chromera velia by fluorescence in situ hybridization.
    Morin-Adeline V; Foster C; Slapeta J
    FEMS Microbiol Lett; 2012 Mar; 328(2):144-9. PubMed ID: 22211939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved method for nanogold in situ hybridization visualized with environmental scanning electron microscopy.
    Ehrhardt CJ; Haymon RM; Sievert SM; Holden PA
    J Microsc; 2009 Oct; 236(1):5-10. PubMed ID: 19772531
    [No Abstract]   [Full Text] [Related]  

  • 14. [Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakass Republic, Russia)].
    Kallistova AIu; Kevbrina MV; Pimenov NV; Rusanov II; Rogozin DIu; Wehrli B; Nozhevnikova AN
    Mikrobiologiia; 2006; 75(6):828-35. PubMed ID: 17205809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH).
    Urzì C; La Cono V; Stackebrandt E
    Environ Microbiol; 2004 Jul; 6(7):678-85. PubMed ID: 15186346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization.
    Zang K; Kurisu F; Kasuga I; Furumai H; Yagi O
    Syst Appl Microbiol; 2008 Aug; 31(3):206-14. PubMed ID: 18513907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CARD-FISH for environmental microorganisms: technical advancement and future applications.
    Kubota K
    Microbes Environ; 2013; 28(1):3-12. PubMed ID: 23124765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of FISH technology for microbiological analysis: current state and prospects.
    Bottari B; Ercolini D; Gatti M; Neviani E
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):485-94. PubMed ID: 17051413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).
    Ueno R
    Can J Microbiol; 2009 Apr; 55(4):465-72. PubMed ID: 19396247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms.
    Wallner G; Amann R; Beisker W
    Cytometry; 1993; 14(2):136-43. PubMed ID: 7679962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.