BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 20150426)

  • 21. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins.
    Ninagawa S; George G; Mori K
    Biochim Biophys Acta Gen Subj; 2021 Mar; 1865(3):129812. PubMed ID: 33316349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells.
    Harada Y; Masahara-Negishi Y; Suzuki T
    Glycobiology; 2015 Nov; 25(11):1196-205. PubMed ID: 26206502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lectin-like ERAD players in ER and cytosol.
    Yoshida Y; Tanaka K
    Biochim Biophys Acta; 2010 Feb; 1800(2):172-80. PubMed ID: 19665047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytoplasmic peptide:N-glycanase cleaves N-glycans on a carboxypeptidase Y mutant during ERAD in Saccharomyces cerevisiae.
    Hosomi A; Suzuki T
    Biochim Biophys Acta; 2015 Apr; 1850(4):612-9. PubMed ID: 25497214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans.
    Hosokawa N; Kamiya Y; Kamiya D; Kato K; Nagata K
    J Biol Chem; 2009 Jun; 284(25):17061-17068. PubMed ID: 19346256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endoglycosidase and glycoamidase release of N-linked glycans.
    Freeze HH; Kranz C
    Curr Protoc Immunol; 2010 Apr; Chapter 8():8.15.1-8.15.25. PubMed ID: 20376844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen.
    Bhamidipati A; Denic V; Quan EM; Weissman JS
    Mol Cell; 2005 Sep; 19(6):741-51. PubMed ID: 16168370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins.
    Alonzi DS; Kukushkin NV; Allman SA; Hakki Z; Williams SJ; Pierce L; Dwek RA; Butters TD
    Cell Mol Life Sci; 2013 Aug; 70(15):2799-814. PubMed ID: 23503623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Png1-Rad23 complex regulates glycoprotein turnover.
    Kim I; Ahn J; Liu C; Tanabe K; Apodaca J; Suzuki T; Rao H
    J Cell Biol; 2006 Jan; 172(2):211-9. PubMed ID: 16401726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the role of ERAD on antibody processing in glycoengineered Saccharomyces cerevisiae.
    Piirainen MA; Frey AD
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31922547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER-associated degradation.
    Izawa T; Nagai H; Endo T; Nishikawa S
    Mol Biol Cell; 2012 Apr; 23(7):1283-93. PubMed ID: 22298424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual enzymatic properties of the cytoplasmic peptide: N-glycanase in C. elegans.
    Suzuki T; Tanabe K; Hara I; Taniguchi N; Colavita A
    Biochem Biophys Res Commun; 2007 Jul; 358(3):837-41. PubMed ID: 17509531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate.
    Su K; Stoller T; Rocco J; Zemsky J; Green R
    J Biol Chem; 1993 Jul; 268(19):14301-9. PubMed ID: 8314793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free oligosaccharides in the cytosol of Caenorhabditis elegans are generated through endoplasmic reticulum-golgi trafficking.
    Kato T; Kitamura K; Maeda M; Kimura Y; Katayama T; Ashida H; Yamamoto K
    J Biol Chem; 2007 Jul; 282(30):22080-8. PubMed ID: 17537729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation.
    Quan EM; Kamiya Y; Kamiya D; Denic V; Weibezahn J; Kato K; Weissman JS
    Mol Cell; 2008 Dec; 32(6):870-7. PubMed ID: 19111666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation.
    Zhang Y; Yamaguchi T; Satoh T; Yagi-Utsumi M; Kamiya Y; Sakae Y; Okamoto Y; Kato K
    Adv Exp Med Biol; 2015; 842():217-30. PubMed ID: 25408346
    [No Abstract]   [Full Text] [Related]  

  • 38. A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast.
    Masahara-Negishi Y; Hosomi A; Della Mea M; Serafini-Fracassini D; Suzuki T
    Biochim Biophys Acta; 2012 Oct; 1820(10):1457-62. PubMed ID: 22659524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast.
    Jakob CA; Bodmer D; Spirig U; Battig P; Marcil A; Dignard D; Bergeron JJ; Thomas DY; Aebi M
    EMBO Rep; 2001 May; 2(5):423-30. PubMed ID: 11375935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins.
    Buschhorn BA; Kostova Z; Medicherla B; Wolf DH
    FEBS Lett; 2004 Nov; 577(3):422-6. PubMed ID: 15556621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.