BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20150498)

  • 1. Break-up of stepped platinum catalyst surfaces by high CO coverage.
    Tao F; Dag S; Wang LW; Liu Z; Butcher DR; Bluhm H; Salmeron M; Somorjai GA
    Science; 2010 Feb; 327(5967):850-3. PubMed ID: 20150498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced low-temperature CO oxidation on a stepped platinum surface for oxygen pressures above 10(-5) Torr.
    Lewis HD; Burnett DJ; Gabelnick AM; Fischer DA; Gland JL
    J Phys Chem B; 2005 Nov; 109(46):21847-57. PubMed ID: 16853838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Step Geometry on the Reconstruction of Stepped Platinum Surfaces under Coadsorption of Ethylene and CO.
    Zhu Z; Barroo C; Lichtenstein L; Eren B; Wu CH; Mao B; Visart de Bocarmé T; Liu Z; Kruse N; Salmeron M; Somorjai GA
    J Phys Chem Lett; 2014 Aug; 5(15):2626-31. PubMed ID: 26277954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ oxidation study of Pt(110) and its interaction with CO.
    Butcher DR; Grass ME; Zeng Z; Aksoy F; Bluhm H; Li WX; Mun BS; Somorjai GA; Liu Z
    J Am Chem Soc; 2011 Dec; 133(50):20319-25. PubMed ID: 22070406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level.
    Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA
    J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO oxidation on Pt-modified Rh(111) electrodes.
    Housmans TH; Feliu JM; Gómez R; Koper MT
    Chemphyschem; 2005 Aug; 6(8):1522-9. PubMed ID: 16035023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between silver nanowires and CO on a stepped platinum surface.
    Streber R; Tränkenschuh B; Schöck J; Papp C; Steinrück HP; McEwen JS; Gaspard P; Denecke R
    J Chem Phys; 2009 Aug; 131(6):064702. PubMed ID: 19691398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage.
    Orita H; Inada Y
    J Phys Chem B; 2005 Dec; 109(47):22469-75. PubMed ID: 16853927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Evolution and Instability of CO-Induced Platinum Clusters on the Pt(557) Surface at Ambient Pressure.
    Kim J; Noh MC; Doh WH; Park JY
    J Am Chem Soc; 2016 Feb; 138(4):1110-3. PubMed ID: 26784145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study.
    Zhu Z; Tao FF; Zheng F; Chang R; Li Y; Heinke L; Liu Z; Salmeron M; Somorjai GA
    Nano Lett; 2012 Mar; 12(3):1491-7. PubMed ID: 22300373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A site-selective in situ study of CO adsorption and desorption on Pt(355).
    Tränkenschuh B; Fritsche N; Fuhrmann T; Papp C; Zhu JF; Denecke R; Steinrück HP
    J Chem Phys; 2006 Feb; 124(7):74712. PubMed ID: 16497075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Co doping on catalytic activity of small Pt clusters.
    Dhilip Kumar TJ; Zhou C; Cheng H; Forrey RC; Balakrishnan N
    J Chem Phys; 2008 Mar; 128(12):124704. PubMed ID: 18376957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of CO adsorption on Pt(100), Pt(410), and Pt(110) surfaces using density functional theory.
    Yamagishi S; Fujimoto T; Inada Y; Orita H
    J Phys Chem B; 2005 May; 109(18):8899-908. PubMed ID: 16852058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques.
    Montano M; Bratlie K; Salmeron M; Somorjai GA
    J Am Chem Soc; 2006 Oct; 128(40):13229-34. PubMed ID: 17017803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic ammonia oxidation on platinum: mechanism and catalyst restructuring at high and low pressure.
    Imbihl R; Scheibe A; Zeng YF; Günther S; Kraehnert R; Kondratenko VA; Baerns M; Offermans WK; Jansen AP; van Santen RA
    Phys Chem Chem Phys; 2007 Jul; 9(27):3522-40. PubMed ID: 17612719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.