These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 20150694)
41. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Bulut Y; Gözübenli N; Aydin H J Hazard Mater; 2007 Jun; 144(1-2):300-6. PubMed ID: 17118540 [TBL] [Abstract][Full Text] [Related]
42. Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Inbaraj BS; Sulochana N J Hazard Mater; 2006 May; 133(1-3):283-90. PubMed ID: 16326005 [TBL] [Abstract][Full Text] [Related]
43. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. Sreejalekshmi KG; Krishnan KA; Anirudhan TS J Hazard Mater; 2009 Jan; 161(2-3):1506-13. PubMed ID: 18550276 [TBL] [Abstract][Full Text] [Related]
44. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions. Homayoon F; Faghihian H; Torki F Environ Sci Pollut Res Int; 2017 Apr; 24(12):11764-11778. PubMed ID: 28337626 [TBL] [Abstract][Full Text] [Related]
45. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. Ai L; Zhang C; Liao F; Wang Y; Li M; Meng L; Jiang J J Hazard Mater; 2011 Dec; 198():282-90. PubMed ID: 22040800 [TBL] [Abstract][Full Text] [Related]
46. Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. Sheng G; Li J; Shao D; Hu J; Chen C; Chen Y; Wang X J Hazard Mater; 2010 Jun; 178(1-3):333-40. PubMed ID: 20153111 [TBL] [Abstract][Full Text] [Related]
47. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Gong JL; Wang B; Zeng GM; Yang CP; Niu CG; Niu QY; Zhou WJ; Liang Y J Hazard Mater; 2009 May; 164(2-3):1517-22. PubMed ID: 18977077 [TBL] [Abstract][Full Text] [Related]
48. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. Hu J; Tong Z; Hu Z; Chen G; Chen T J Colloid Interface Sci; 2012 Jul; 377(1):355-61. PubMed ID: 22513167 [TBL] [Abstract][Full Text] [Related]
49. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. Rocha CG; Zaia DA; Alfaya RV; Alfaya AA J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165 [TBL] [Abstract][Full Text] [Related]
50. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue. Anirudhan TS; Radhakrishnan PG J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262 [TBL] [Abstract][Full Text] [Related]
51. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). Dutta S; Bhattacharyya A; De P; Ray P; Basu S J Hazard Mater; 2009 Dec; 172(2-3):888-96. PubMed ID: 19692174 [TBL] [Abstract][Full Text] [Related]
52. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite. Benhammou A; Yaacoubi A; Nibou L; Tanouti B J Hazard Mater; 2005 Jan; 117(2-3):243-9. PubMed ID: 15629583 [TBL] [Abstract][Full Text] [Related]
53. Removal of Cr (VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. Wang XS; Chen LF; Li FY; Chen KL; Wan WY; Tang YJ J Hazard Mater; 2010 Mar; 175(1-3):816-22. PubMed ID: 19926221 [TBL] [Abstract][Full Text] [Related]
54. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. Chen GC; Shan XQ; Pei ZG; Wang H; Zheng LR; Zhang J; Xie YN J Hazard Mater; 2011 Apr; 188(1-3):156-63. PubMed ID: 21324587 [TBL] [Abstract][Full Text] [Related]
55. Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p(GMA-MMA-EGDMA) beads. Bayramoğlu G; Arica MY J Hazard Mater; 2007 Jun; 144(1-2):449-57. PubMed ID: 17118552 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of Fuller's earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon. Oubagaranadin JU; Sathyamurthy N; Murthy ZV J Hazard Mater; 2007 Apr; 142(1-2):165-74. PubMed ID: 16987602 [TBL] [Abstract][Full Text] [Related]
57. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. Lopes CB; Otero M; Lin Z; Silva CM; Pereira E; Rocha J; Duarte AC J Hazard Mater; 2010 Mar; 175(1-3):439-44. PubMed ID: 19896771 [TBL] [Abstract][Full Text] [Related]
58. Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Hakami O; Zhang Y; Banks CJ Water Res; 2012 Aug; 46(12):3913-22. PubMed ID: 22608609 [TBL] [Abstract][Full Text] [Related]
59. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water. Yu H; Fugetsu B J Hazard Mater; 2010 May; 177(1-3):138-45. PubMed ID: 20045251 [TBL] [Abstract][Full Text] [Related]
60. Fabrication of a selective mercury sensor based on the adsorption of cold vapor of mercury on carbon nanotubes: determination of mercury in industrial wastewater. Safavi A; Maleki N; Doroodmand MM J Hazard Mater; 2010 Jan; 173(1-3):622-9. PubMed ID: 19782468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]