BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20150914)

  • 1. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1.
    Bouchier-Hayes L; McBride S; van Geelen CM; Nance S; Lewis LK; Pinkoski MJ; Beere HM
    Cell Death Differ; 2010 Jun; 17(6):1034-46. PubMed ID: 20150914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of the HSF-1 DNA-binding domain to multimeric C. elegans consensus HSEs is guided by cooperative interactions.
    Schmauder L; Sima S; Hadj AB; Cesar R; Richter K
    Sci Rep; 2022 May; 12(1):8984. PubMed ID: 35643773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions.
    Ramirez VP; Stamatis M; Shmukler A; Aneskievich BJ
    Cell Stress Chaperones; 2015 Jan; 20(1):95-107. PubMed ID: 25073946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.
    Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T
    J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative and competitive protein interactions at the hsp70 promoter.
    Mason PB; Lis JT
    J Biol Chem; 1997 Dec; 272(52):33227-33. PubMed ID: 9407112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element.
    Kroeger PE; Sarge KD; Morimoto RI
    Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin landscape dictates HSF binding to target DNA elements.
    Guertin MJ; Lis JT
    PLoS Genet; 2010 Sep; 6(9):e1001114. PubMed ID: 20844575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
    Kroeger PE; Morimoto RI
    Mol Cell Biol; 1994 Nov; 14(11):7592-603. PubMed ID: 7935474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.
    Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R
    J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism in the regulatory sequence of the human hsp70-1 gene does not affect heat shock factor binding or heat shock protein synthesis.
    Favatier F; Jacquier-Sarlin MR; Swierczewski E; Polla BS
    Cell Mol Life Sci; 1999 Nov; 56(7-8):701-8. PubMed ID: 11212316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of a yeast HSP70 gene by heat shock factor and an upstream repression site-binding factor.
    Park HO; Craig EA
    Genes Dev; 1991 Jul; 5(7):1299-308. PubMed ID: 2065978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclopentenone-type prostaglandin 15-deoxy-delta 12,14-prostaglandin J2 inhibits CD95 ligand gene expression in T lymphocytes: interference with promoter activation via peroxisome proliferator-activated receptor-gamma-independent mechanisms.
    Cippitelli M; Fionda C; Di Bona D; Lupo A; Piccoli M; Frati L; Santoni A
    J Immunol; 2003 May; 170(9):4578-92. PubMed ID: 12707336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences.
    Shopland LS; Lis JT
    Chromosoma; 1996 Sep; 105(3):158-71. PubMed ID: 8781184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.