These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20150952)

  • 1. Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules.
    Cheng LT; Xie Y; Dzubiella J; McCammon JA; Che J; Li B
    J Chem Theory Comput; 2009 Feb; 5(2):257-266. PubMed ID: 20150952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the level-set method to the implicit solvation of nonpolar molecules.
    Cheng LT; Dzubiella J; McCammon JA; Li B
    J Chem Phys; 2007 Aug; 127(8):084503. PubMed ID: 17764265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.
    Li B; Zhao Y
    SIAM J Appl Math; 2013; 73(1):1-23. PubMed ID: 24058213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation.
    Wang Z; Che J; Cheng LT; Dzubiella J; Li B; McCammon JA
    J Chem Theory Comput; 2012 Feb; 8(2):386-397. PubMed ID: 22346739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational approach for nonpolar solvation analysis.
    Chen Z; Zhao S; Chun J; Thomas DG; Baker NA; Bates PW; Wei GW
    J Chem Phys; 2012 Aug; 137(8):084101. PubMed ID: 22938212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic free energy and its variations in implicit solvent models.
    Che J; Dzubiella J; Li B; McCammon JA
    J Phys Chem B; 2008 Mar; 112(10):3058-69. PubMed ID: 18275182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameterization of a geometric flow implicit solvation model.
    Thomas DG; Chun J; Chen Z; Wei G; Baker NA
    J Comput Chem; 2013 Mar; 34(8):687-95. PubMed ID: 23212974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding.
    Zhang Z; Ricci CG; Fan C; Cheng LT; Li B; McCammon JA
    J Chem Theory Comput; 2021 Apr; 17(4):2465-2478. PubMed ID: 33650860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations.
    Zhou S; Sun H; Cheng LT; Dzubiella J; Li B; McCammon JA
    J Chem Phys; 2016 Aug; 145(5):054114. PubMed ID: 27497546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.
    Li BO; Liu Y
    SIAM J Appl Math; 2015; 75(5):2072-2092. PubMed ID: 26877556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit Solvation Using the Superposition Approximation (IS-SPA): An Implicit Treatment of the Nonpolar Component to Solvation for Simulating Molecular Aggregation.
    Lake PT; McCullagh M
    J Chem Theory Comput; 2017 Dec; 13(12):5911-5924. PubMed ID: 29120632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme.
    Garcia-Ratés M; Neese F
    J Comput Chem; 2020 Apr; 41(9):922-939. PubMed ID: 31889331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18410-18419. PubMed ID: 29946610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.
    Nguyen DD; Wei GW
    J Comput Chem; 2017 Jan; 38(1):24-36. PubMed ID: 27718270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.
    Sun H; Zhou S; Moore DK; Cheng LT; Li B
    J Sci Comput; 2016 May; 67(2):705-723. PubMed ID: 27365866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.