These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20150998)

  • 1. Application of 3D Zernike descriptors to shape-based ligand similarity searching.
    Venkatraman V; Chakravarthy PR; Kihara D
    J Cheminform; 2009 Dec; 1():19. PubMed ID: 20150998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.
    Kihara D; Sael L; Chikhi R; Esquivel-Rodriguez J
    Curr Protein Pept Sci; 2011 Sep; 12(6):520-30. PubMed ID: 21787306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying Machine Learning to Ultrafast Shape Recognition in Ligand-Based Virtual Screening.
    Bonanno E; Ebejer JP
    Front Pharmacol; 2019; 10():1675. PubMed ID: 32140104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved protein surface comparison and application to low-resolution protein structure data.
    Sael L; Kihara D
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S2. PubMed ID: 21172052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional compound comparison methods and their application in drug discovery.
    Shin WH; Zhu X; Bures MG; Kihara D
    Molecules; 2015 Jul; 20(7):12841-62. PubMed ID: 26193243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hybrid ultrafast shape descriptor method for use in virtual screening.
    Cannon EO; Nigsch F; Mitchell JB
    Chem Cent J; 2008 Feb; 2():3. PubMed ID: 18282294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FP-Zernike: An Open-source Structural Database Construction Toolkit for Fast Structure Retrieval.
    Qi J; Feng C; Shi Y; Yang J; Zhang F; Li G; Han R
    Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38894604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparison of protein-protein interaction interface using physicochemical feature-based descriptors of surface patches.
    Shin WH; Kumazawa K; Imai K; Hirokawa T; Kihara D
    Front Mol Biosci; 2023; 10():1110567. PubMed ID: 36814641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast protein tertiary structure retrieval based on global surface shape similarity.
    Sael L; Li B; La D; Fang Y; Ramani K; Rustamov R; Kihara D
    Proteins; 2008 Sep; 72(4):1259-73. PubMed ID: 18361455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery.
    Kumar A; Zhang KYJ
    Front Chem; 2018; 6():315. PubMed ID: 30090808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast shape recognition: evaluating a new ligand-based virtual screening technology.
    Ballester PJ; Finn PW; Richards WG
    J Mol Graph Model; 2009 Apr; 27(7):836-45. PubMed ID: 19188082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints.
    Schreyer AM; Blundell T
    J Cheminform; 2012 Nov; 4(1):27. PubMed ID: 23131020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel, customizable and optimizable parameter method using spherical harmonics for molecular shape similarity comparisons.
    Cai C; Gong J; Liu X; Jiang H; Gao D; Li H
    J Mol Model; 2012 Apr; 18(4):1597-610. PubMed ID: 21805132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
    Awale M; Jin X; Reymond JL
    J Cheminform; 2015; 7():3. PubMed ID: 25750664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Outlier Detection and Zernike-Canterakis Moments for Molecular Surface Meshes-Fast Implementation in Python.
    Banach M
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.
    Han X; Wei Q; Kihara D
    Curr Protoc Bioinformatics; 2017 Dec; 60():3.14.1-3.14.15. PubMed ID: 29220075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. USR-VS: a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques.
    Li H; Leung KS; Wong MH; Ballester PJ
    Nucleic Acids Res; 2016 Jul; 44(W1):W436-41. PubMed ID: 27106057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.