These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 20151023)

  • 1. FAST MONTE CARLO SIMULATION METHODS FOR BIOLOGICAL REACTION-DIFFUSION SYSTEMS IN SOLUTION AND ON SURFACES.
    Kerr RA; Bartol TM; Kaminsky B; Dittrich M; Chang JC; Baden SB; Sejnowski TJ; Stiles JR
    SIAM J Sci Comput; 2008 Oct; 30(6):3126. PubMed ID: 20151023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python interface.
    Husar A; Ordyan M; Garcia GC; Yancey JG; Saglam AS; Faeder JR; Bartol TM; Kennedy MB; Sejnowski TJ
    PLoS Comput Biol; 2024 Apr; 20(4):e1011800. PubMed ID: 38656994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites.
    Laghaei R; Meriney SD
    Front Synaptic Neurosci; 2022; 14():917285. PubMed ID: 35769072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images.
    Lee HH; Fieremans E; Novikov DS
    J Neurosci Methods; 2021 Feb; 350():109018. PubMed ID: 33279478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid creation, Monte Carlo simulation, and visualization of realistic 3D cell models.
    Czech J; Dittrich M; Stiles JR
    Methods Mol Biol; 2009; 500():237-87. PubMed ID: 19399426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework.
    Tapia JJ; Saglam AS; Czech J; Kuczewski R; Bartol TM; Sejnowski TJ; Faeder JR
    Methods Mol Biol; 2019; 1945():203-229. PubMed ID: 30945248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and scalable prediction of stochastic reaction-diffusion processes using graph neural networks.
    Cao Z; Chen R; Xu L; Zhou X; Fu X; Zhong W; Grima R
    Math Biosci; 2024 Jul; 375():109248. PubMed ID: 38986837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems.
    Arjunan SNV; Miyauchi A; Iwamoto K; Takahashi K
    BMC Bioinformatics; 2020 Jan; 21(1):33. PubMed ID: 31996129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.
    Slepoy A; Thompson AP; Plimpton SJ
    J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.
    Hepburn I; Chen W; Wils S; De Schutter E
    BMC Syst Biol; 2012 May; 6():36. PubMed ID: 22574658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid stochastic simulations of intracellular reaction-diffusion systems.
    Kalantzis G
    Comput Biol Chem; 2009 Jun; 33(3):205-15. PubMed ID: 19414282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
    Beentjes CHL; Baker RE
    Bull Math Biol; 2019 Aug; 81(8):2931-2959. PubMed ID: 29802519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Implementation of Cluster Expansion Models in Surface Kinetic Monte Carlo Simulations with Lateral Interactions: Subtraction Schemes, Supersites, and the Supercluster Contraction.
    Hess F
    J Comput Chem; 2019 Nov; 40(30):2664-2676. PubMed ID: 31418885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.