These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20151544)

  • 1. Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration.
    Barker PF; Purcell SM; Douglas P; Barletta P; Coppendale N; Maher-McWilliams C; Tennyson J
    Faraday Discuss; 2009; 142():175-90; discussion 221-55. PubMed ID: 20151544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathetic cooling with two atomic species in an optical trap.
    Mudrich M; Kraft S; Singer K; Grimm R; Mosk A; Weidemüller M
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):253001. PubMed ID: 12097086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice.
    Yin Y; Zhou Q; Deng L; Xia Y; Yin J
    Opt Express; 2009 Jun; 17(13):10706-17. PubMed ID: 19550467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rydberg-Stark deceleration of atoms and molecules.
    Hogan SD
    EPJ Tech Instrum; 2016; 3(1):2. PubMed ID: 32355605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser cooling of a diatomic molecule.
    Shuman ES; Barry JF; Demille D
    Nature; 2010 Oct; 467(7317):820-3. PubMed ID: 20852614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping cold ground state argon atoms.
    Edmunds PD; Barker PF
    Phys Rev Lett; 2014 Oct; 113(18):183001. PubMed ID: 25396366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penning collisions between supersonically expanded metastable He atoms and laser-cooled Li atoms.
    Grzesiak J; Momose T; Stienkemeier F; Mudrich M; Dulitz K
    J Chem Phys; 2019 Jan; 150(3):034201. PubMed ID: 30660148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Trapping of an Ultracold Gas of Polar Molecules.
    McCarron DJ; Steinecker MH; Zhu Y; DeMille D
    Phys Rev Lett; 2018 Jul; 121(1):013202. PubMed ID: 30028161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decelerating and Trapping Large Polar Molecules.
    Patterson D
    Chemphyschem; 2016 Nov; 17(22):3790-3794. PubMed ID: 27451981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inelastic collisions in optically trapped ultracold metastable ytterbium.
    Yamaguchi A; Uetake S; Hashimoto D; Doyle JM; Takahashi Y
    Phys Rev Lett; 2008 Dec; 101(23):233002. PubMed ID: 19113544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magneto-optical trapping of a diatomic molecule.
    Barry JF; McCarron DJ; Norrgard EB; Steinecker MH; DeMille D
    Nature; 2014 Aug; 512(7514):286-9. PubMed ID: 25143111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics.
    Lu M; Youn SH; Lev BL
    Phys Rev Lett; 2010 Feb; 104(6):063001. PubMed ID: 20366817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.
    Luan T; Yao H; Wang L; Li C; Yang S; Chen X; Ma Z
    Opt Express; 2015 May; 23(9):11378-87. PubMed ID: 25969232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping of Molecular Oxygen together with Lithium Atoms.
    Akerman N; Karpov M; Segev Y; Bibelnik N; Narevicius J; Narevicius E
    Phys Rev Lett; 2017 Aug; 119(7):073204. PubMed ID: 28949664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonator-enhanced optical dipole trap for fermionic lithium atoms.
    Mosk A; Jochim S; Moritz H; Elsässer T; Weidemüller M; Grimm R
    Opt Lett; 2001 Dec; 26(23):1837-9. PubMed ID: 18059710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
    Li J; de Melo LF; Luo L
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.
    Loreau J; van der Avoird A
    J Chem Phys; 2015 Nov; 143(18):184303. PubMed ID: 26567658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Producing translationally cold, ground-state CO molecules.
    Blokland JH; Riedel J; Putzke S; Sartakov BG; Groenenboom GC; Meijer G
    J Chem Phys; 2011 Sep; 135(11):114201. PubMed ID: 21950855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultracold Rb-OH collisions and prospects for sympathetic cooling.
    Lara M; Bohn JL; Potter D; Soldán P; Hutson JM
    Phys Rev Lett; 2006 Nov; 97(18):183201. PubMed ID: 17155539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for sympathetic vibrational cooling of translationally cold molecules.
    Rellergert WG; Sullivan ST; Schowalter SJ; Kotochigova S; Chen K; Hudson ER
    Nature; 2013 Mar; 495(7442):490-4. PubMed ID: 23538830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.