BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20151682)

  • 1. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers.
    Benhabib M; Chiesl TN; Stockton AM; Scherer JR; Mathies RA
    Anal Chem; 2010 Mar; 82(6):2372-9. PubMed ID: 20151682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system.
    Stockton AM; Chiesl TN; Scherer JR; Mathies RA
    Anal Chem; 2009 Jan; 81(2):790-6. PubMed ID: 19072718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.
    Scherer JR; Liu P; Mathies RA
    Rev Sci Instrum; 2010 Nov; 81(11):113105. PubMed ID: 21133459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection.
    Skelley AM; Cleaves HJ; Jayarajah CN; Bada JL; Mathies RA
    Astrobiology; 2006 Dec; 6(6):824-37. PubMed ID: 17155883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.
    Kim J; Jensen EC; Stockton AM; Mathies RA
    Anal Chem; 2013 Aug; 85(16):7682-8. PubMed ID: 23675832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides.
    Dongre C; Dekker R; Hoekstra HJ; Pollnau M; Martinez-Vazquez R; Osellame R; Cerullo G; Ramponi R; van Weeghel R; Besselink GA; van den Vlekkert HH
    Opt Lett; 2008 Nov; 33(21):2503-5. PubMed ID: 18978901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.
    Sahore V; Sonker M; Nielsen AV; Knob R; Kumar S; Woolley AT
    Anal Bioanal Chem; 2018 Jan; 410(3):933-941. PubMed ID: 28799040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars.
    Skelley AM; Scherer JR; Aubrey AD; Grover WH; Ivester RH; Ehrenfreund P; Grunthaner FJ; Bada JL; Mathies RA
    Proc Natl Acad Sci U S A; 2005 Jan; 102(4):1041-6. PubMed ID: 15657130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microchip Electrophoresis Tools for the Analysis of Small Molecules.
    Gomez FJV; Silva MF
    Methods Mol Biol; 2019; 1906():197-206. PubMed ID: 30488394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life.
    Mora MF; Stockton AM; Willis PA
    Electrophoresis; 2012 Sep; 33(17):2624-38. PubMed ID: 22965706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis.
    Nuchtavorn N; Smejkal P; Breadmore MC; Guijt RM; Doble P; Bek F; Foret F; Suntornsuk L; Macka M
    J Chromatogr A; 2013 Apr; 1286():216-21. PubMed ID: 23510955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated circuit-based instrumentation for microchip capillary electrophoresis.
    Behnam M; Kaigala GV; Khorasani M; Martel S; Elliott DG; Backhouse CJ
    IET Nanobiotechnol; 2010 Sep; 4(3):91-101. PubMed ID: 20726675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated high performance microfluidic organic analysis instrument for planetary and space exploration.
    Butterworth AL; Golozar M; Estlack Z; McCauley J; Mathies RA; Kim J
    Lab Chip; 2024 Apr; 24(9):2551-2560. PubMed ID: 38624013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of thiols by microchip capillary electrophoresis for in situ planetary investigations.
    Mora MF; Stockton AM; Willis PA
    Methods Mol Biol; 2015; 1274():43-52. PubMed ID: 25673481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids.
    Stockton AM; Tjin CC; Chiesl TN; Mathies RA
    Astrobiology; 2011; 11(6):519-28. PubMed ID: 21790324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis.
    Kaigala GV; Hoang VN; Stickel A; Lauzon J; Manage D; Pilarski LM; Backhouse CJ
    Analyst; 2008 Mar; 133(3):331-8. PubMed ID: 18299747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urine.
    Guo WP; Lau KM; Fung YS
    Electrophoresis; 2010 Sep; 31(18):3044-52. PubMed ID: 20872610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.