These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20151696)

  • 1. Electrokinetic concentration of DNA polymers in nanofluidic channels.
    Stein D; Deurvorst Z; van der Heyden FH; Koopmans WJ; Gabel A; Dekker C
    Nano Lett; 2010 Mar; 10(3):765-72. PubMed ID: 20151696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression and free expansion of single DNA molecules in nanochannels.
    Reccius CH; Mannion JT; Cross JD; Craighead HG
    Phys Rev Lett; 2005 Dec; 95(26):268101. PubMed ID: 16486410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels.
    Thamdrup LH; Larsen NB; Kristensen A
    Nano Lett; 2010 Mar; 10(3):826-32. PubMed ID: 20166745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA electrophoresis in designed channels.
    Sakaue T
    Eur Phys J E Soft Matter; 2006 Apr; 19(4):477-87. PubMed ID: 16586014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels.
    Mannion JT; Reccius CH; Cross JD; Craighead HG
    Biophys J; 2006 Jun; 90(12):4538-45. PubMed ID: 16732056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A control method for steering individual particles inside liquid droplets actuated by electrowetting.
    Walker S; Shapiro B
    Lab Chip; 2005 Dec; 5(12):1404-7. PubMed ID: 16286973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.
    Daghighi Y; Li D
    Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of electrical fields with fluids: laboratory-on-a-chip applications.
    Wu J
    IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement and manipulation of actin filaments by electric fields.
    Arsenault ME; Zhao H; Purohit PK; Goldman YE; Bau HH
    Biophys J; 2007 Oct; 93(8):L42-4. PubMed ID: 17693465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels.
    Reccius CH; Stavis SM; Mannion JT; Walker LP; Craighead HG
    Biophys J; 2008 Jul; 95(1):273-86. PubMed ID: 18339746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-state migration of DNA in a structured microchannel.
    Streek M; Schmid F; Duong TT; Anselmetti D; Ros A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011905. PubMed ID: 15697628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly.
    Zheng L; Brody JP; Burke PJ
    Biosens Bioelectron; 2004 Oct; 20(3):606-19. PubMed ID: 15494246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers.
    Peng H; Ling XS
    Nanotechnology; 2009 May; 20(18):185101. PubMed ID: 19420602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical forces for microscale cell manipulation.
    Voldman J
    Annu Rev Biomed Eng; 2006; 8():425-54. PubMed ID: 16834563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A device for performing lateral conductance measurements on individual double-stranded DNA molecules.
    Menard LD; Mair CE; Woodson ME; Alarie JP; Ramsey JM
    ACS Nano; 2012 Oct; 6(10):9087-94. PubMed ID: 22950784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.