BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20151697)

  • 1. Quantum interference channeling at graphene edges.
    Yang H; Mayne AJ; Boucherit M; Comtet G; Dujardin G; Kuk Y
    Nano Lett; 2010 Mar; 10(3):943-7. PubMed ID: 20151697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast carrier kinetics in exfoliated graphene and thin graphite films.
    Newson RW; Dean J; Schmidt B; van Driel HM
    Opt Express; 2009 Feb; 17(4):2326-33. PubMed ID: 19219135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs.
    Wang L; Cai W; Luo W; Ma Z; Du C; Zhang X; Xu J
    Opt Express; 2014 Dec; 22(26):32450-6. PubMed ID: 25607207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons.
    Christensen J; Manjavacas A; Thongrattanasiri S; Koppens FH; de Abajo FJ
    ACS Nano; 2012 Jan; 6(1):431-40. PubMed ID: 22147667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental direct estimation of nonlinear functionals of photonic quantum states via interferometry with a controlled-swap operation.
    Lee SM; Choi SK; Park HS
    Opt Express; 2013 Jul; 21(15):17824-30. PubMed ID: 23938655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionization effects on spectral signatures of quantum-path interference in high-harmonic generation.
    Holler M; Zaïr A; Schapper F; Auguste T; Cormier E; Wyatt A; Monmayrant A; Walmsley IA; Gallmann L; Salières P; Keller U
    Opt Express; 2009 Mar; 17(7):5716-22. PubMed ID: 19333340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling inelastic light scattering quantum pathways in graphene.
    Chen CF; Park CH; Boudouris BW; Horng J; Geng B; Girit C; Zettl A; Crommie MF; Segalman RA; Louie SG; Wang F
    Nature; 2011 Mar; 471(7340):617-20. PubMed ID: 21412234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.
    Osella S; Narita A; Schwab MG; Hernandez Y; Feng X; Müllen K; Beljonne D
    ACS Nano; 2012 Jun; 6(6):5539-48. PubMed ID: 22631451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable graphene dc superconducting quantum interference device.
    Girit C; Bouchiat V; Naaman O; Zhang Y; Crommie MF; Zettl A; Siddiqi I
    Nano Lett; 2009 Jan; 9(1):198-9. PubMed ID: 19090696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman signature of graphene superlattices.
    Carozo V; Almeida CM; Ferreira EH; Cançado LG; Achete CA; Jorio A
    Nano Lett; 2011 Nov; 11(11):4527-34. PubMed ID: 21978182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation.
    Park C; Yang H; Mayne AJ; Dujardin G; Seo S; Kuk Y; Ihm J; Kim G
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18622-5. PubMed ID: 22049340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman study on the g mode of graphene for determination of edge orientation.
    Cong C; Yu T; Wang H
    ACS Nano; 2010 Jun; 4(6):3175-80. PubMed ID: 20446715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference from a nonlocal double-slit through one-photon process.
    Gan S; Zhang SH; Xiong J; Wang K
    Opt Express; 2009 Dec; 17(26):23672-7. PubMed ID: 20052077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111).
    Li Y; Subramaniam D; Atodiresei N; Lazić P; Caciuc V; Pauly C; Georgi A; Busse C; Liebmann M; Blügel S; Pratzer M; Morgenstern M; Mazzarello R
    Adv Mater; 2013 Apr; 25(14):1967-72. PubMed ID: 23382024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption.
    Othman MA; Guclu C; Capolino F
    Opt Express; 2013 Mar; 21(6):7614-32. PubMed ID: 23546145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule.
    She Y; Zheng X; Wang D; Zhang W
    Opt Express; 2013 Jul; 21(14):17392-403. PubMed ID: 23938587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong enhancement of light absorption and highly directive thermal emission in graphene.
    Pu M; Chen P; Wang Y; Zhao Z; Wang C; Huang C; Hu C; Luo X
    Opt Express; 2013 May; 21(10):11618-27. PubMed ID: 23736385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical control of edge chirality in graphene.
    Begliarbekov M; Sasaki K; Sul O; Yang EH; Strauf S
    Nano Lett; 2011 Nov; 11(11):4874-8. PubMed ID: 22017391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural coherency of graphene on Ir(111).
    Coraux J; N'Diaye AT; Busse C; Michely T
    Nano Lett; 2008 Feb; 8(2):565-70. PubMed ID: 18189442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.