These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 20151705)
1. Ab initio elasticity of poly(lactic acid) crystals. Lin T; Liu XY; He C J Phys Chem B; 2010 Mar; 114(9):3133-9. PubMed ID: 20151705 [TBL] [Abstract][Full Text] [Related]
2. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H; Karaki Y; Wada S; Yamanobe T ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564 [TBL] [Abstract][Full Text] [Related]
3. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
4. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
5. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
6. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
7. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864 [TBL] [Abstract][Full Text] [Related]
8. Crystallization-driven formation poly (l-lactic acid)/poly (d-lactic acid)-polyethylene glycol-poly (l-lactic acid) small-sized microsphere structures by solvent-induced self-assembly. Wang K; Wang R; Hu K; Ma Z; Zhang C; Sun X Int J Biol Macromol; 2024 Jan; 254(Pt 3):127924. PubMed ID: 37944727 [TBL] [Abstract][Full Text] [Related]
9. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy. Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087 [TBL] [Abstract][Full Text] [Related]
11. Young's modulus of the different crystalline phases of poly (l-lactic acid). Jariyavidyanont K; Yu Q; Petzold A; Thurn-Albrecht T; Glüge R; Altenbach H; Androsch R J Mech Behav Biomed Mater; 2023 Jan; 137():105546. PubMed ID: 36375274 [TBL] [Abstract][Full Text] [Related]
12. Calculation of infrared/Raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method. Lin T; Liu XY; He C J Phys Chem B; 2012 Feb; 116(5):1524-35. PubMed ID: 22229545 [TBL] [Abstract][Full Text] [Related]
13. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion. Slivka MA; Chu CC; Adisaputro IA J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762 [TBL] [Abstract][Full Text] [Related]
14. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation. Wang Y; Han X; Pan J; Sinka C J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Liu R; Dai L; Hu LQ; Zhou WQ; Si CL Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():397-403. PubMed ID: 28866180 [TBL] [Abstract][Full Text] [Related]
16. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; Brünig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related]
17. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility. He W; Ye L; Coates P; Caton-Rose F; Zhao X Int J Biol Macromol; 2023 May; 236():123980. PubMed ID: 36898455 [TBL] [Abstract][Full Text] [Related]
18. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride). Yu C; Han L; Bao J; Shan G; Bao Y; Pan P J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of substrata effect on cell adhesion properties using freestanding poly(L-lactic acid) nanosheets. Fujie T; Ricotti L; Desii A; Menciassi A; Dario P; Mattoli V Langmuir; 2011 Nov; 27(21):13173-82. PubMed ID: 21913651 [TBL] [Abstract][Full Text] [Related]
20. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]