These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 20151746)

  • 1. Quantum instanton evaluations of surface diffusion, interior migration, and surface-subsurface transport for H/Ni.
    Wang W; Zhao Y
    J Chem Phys; 2010 Feb; 132(6):064502. PubMed ID: 20151746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path integral evaluation of H diffusion on Ni(100) surface based on the quantum instanton approximation.
    Wang W; Zhao Y
    J Chem Phys; 2009 Mar; 130(11):114708. PubMed ID: 19317556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces.
    Bhatia B; Sholl DS
    J Chem Phys; 2005 May; 122(20):204707. PubMed ID: 15945764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy.
    Cinquini F; Delbecq F; Sautet P
    Phys Chem Chem Phys; 2009 Dec; 11(48):11546-56. PubMed ID: 20024427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum instanton evaluation of the thermal rate constants and kinetic isotope effects for SiH4+H-->SiH3+H2 reaction in full Cartesian space.
    Wang W; Feng S; Zhao Y
    J Chem Phys; 2007 Mar; 126(11):114307. PubMed ID: 17381206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.
    Zhao Y; Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3100-7. PubMed ID: 15268462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.
    Montoya A; Schlunke A; Haynes BS
    J Phys Chem B; 2006 Aug; 110(34):17145-54. PubMed ID: 16928010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic hydrogen adsorption and incipient hydrogenation of the Mg(0001) surface: a density-functional theory study.
    Li Y; Zhang P; Sun B; Yang Y; Wei Y
    J Chem Phys; 2009 Jul; 131(3):034706. PubMed ID: 19624220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical calculations of CH4 and H2 associative desorption from Ni(111): could subsurface hydrogen play an important role?
    Henkelman G; Arnaldsson A; Jónsson H
    J Chem Phys; 2006 Jan; 124(4):044706. PubMed ID: 16460199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.
    Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3086-99. PubMed ID: 15268461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation.
    Buchowiecki M; Vanícek J
    J Chem Phys; 2010 May; 132(19):194106. PubMed ID: 20499950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface.
    Wang W; Zhao Y
    Phys Chem Chem Phys; 2015 Feb; 17(8):5901-12. PubMed ID: 25630487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly converging lattice sums for nonelectrostatic interactions.
    Ko GH; Fink WH
    J Comput Chem; 2002 Mar; 23(4):477-83. PubMed ID: 11908084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-instanton evaluation of the kinetic isotope effects.
    Vanícek J; Miller WH; Castillo JF; Aoiz FJ
    J Chem Phys; 2005 Aug; 123(5):054108. PubMed ID: 16108632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces.
    Pozzo M; Alfè D; Amieiro A; French S; Pratt A
    J Chem Phys; 2008 Mar; 128(9):094703. PubMed ID: 18331106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dissociation and recombination rates of CH
    Wang W; Zhao Y
    J Chem Phys; 2017 Jul; 147(4):044703. PubMed ID: 28764359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.
    Wang Q; Hammes-Schiffer S
    J Chem Phys; 2006 Nov; 125(18):184102. PubMed ID: 17115733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation rates of H2 on a Ni(100) surface: the role of the physisorbed state.
    Wang W; Zhao Y
    Phys Chem Chem Phys; 2014 Jul; 16(26):13318-28. PubMed ID: 24869635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics.
    Panczyk T; Szabelski P; Rudzinski W
    J Phys Chem B; 2005 Jun; 109(21):10986-94. PubMed ID: 16852339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies.
    Nave S; Jackson B
    J Chem Phys; 2009 Feb; 130(5):054701. PubMed ID: 19206983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.