These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20152158)

  • 41. Molecular structure and target recognition of neuronal calcium sensor proteins.
    Ames JB; Lim S
    Biochim Biophys Acta; 2012 Aug; 1820(8):1205-13. PubMed ID: 22020049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
    Hwang JY; Koch KW
    Biochemistry; 2002 Oct; 41(43):13021-8. PubMed ID: 12390029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential Nanosecond Protein Dynamics in Homologous Calcium Sensors.
    Robin J; Brauer J; Sulmann S; Marino V; Dell'Orco D; Lienau C; Koch KW
    ACS Chem Biol; 2015 Oct; 10(10):2344-52. PubMed ID: 26204433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2.
    Theisgen S; Scheidt HA; Magalhães A; Bonagamba TJ; Huster D
    Biochim Biophys Acta; 2010 Feb; 1798(2):266-74. PubMed ID: 19616509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The dimerization domain in outer segment guanylate cyclase is a Ca²⁺-sensitive control switch module.
    Zägel P; Dell'Orco D; Koch KW
    Biochemistry; 2013 Jul; 52(30):5065-74. PubMed ID: 23815670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors.
    Marino V; Dal Cortivo G; Oppici E; Maltese PE; D'Esposito F; Manara E; Ziccardi L; Falsini B; Magli A; Bertelli M; Dell'Orco D
    Hum Mol Genet; 2018 Dec; 27(24):4204-4217. PubMed ID: 30184081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Transition of Photoreceptor Guanylate Cyclase Type 1 to the Active State.
    Shahu MK; Schuhmann F; Scholten A; Solov'yov IA; Koch KW
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress.
    Plana-Bonamaisó A; López-Begines S; Andilla J; Fidalgo MJ; Loza-Alvarez P; Estanyol JM; Villa P; Méndez A
    Cell Death Dis; 2020 Jan; 11(1):62. PubMed ID: 31980596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational changes in calcium-sensor proteins under molecular crowding conditions.
    Sulmann S; Dell'Orco D; Marino V; Behnen P; Koch KW
    Chemistry; 2014 May; 20(22):6756-62. PubMed ID: 24677478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium modulation of bovine photoreceptor guanylate cyclase.
    Duda T; Goraczniak R; Surgucheva I; Rudnicka-Nawrot M; Gorczyca WA; Palczewski K; Sitaramayya A; Baehr W; Sharma RK
    Biochemistry; 1996 Jul; 35(26):8478-82. PubMed ID: 8679607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis.
    Xu X; Ishima R; Ames JB
    Proteins; 2011 Jun; 79(6):1910-22. PubMed ID: 21465563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium-dependent conformational changes in guanylate cyclase-activating protein 2 monitored by cysteine accessibility.
    Helten A; Koch KW
    Biochem Biophys Res Commun; 2007 May; 356(3):687-92. PubMed ID: 17368568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoreceptor guanylate cyclase variants: cGMP production under control.
    Sokal I; Alekseev A; Palczewski K
    Acta Biochim Pol; 2003; 50(4):1075-95. PubMed ID: 14739996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The myristoylation of the neuronal Ca2+ -sensors guanylate cyclase-activating protein 1 and 2.
    Hwang JY; Koch KW
    Biochim Biophys Acta; 2002 Nov; 1600(1-2):111-7. PubMed ID: 12445466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of GCAP1 with retinal guanylyl cyclase and calcium: sensitivity to fatty acylation.
    Peshenko IV; Olshevskaya EV; Dizhoor AM
    Front Mol Neurosci; 2012; 5():19. PubMed ID: 22371697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation.
    Hwang JY; Schlesinger R; Koch KW
    Eur J Biochem; 2004 Sep; 271(18):3785-93. PubMed ID: 15355355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Allosteric communication pathways routed by Ca
    Marino V; Dell'Orco D
    Sci Rep; 2016 Oct; 6():34277. PubMed ID: 27739433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors.
    Cudia D; Roseman GP; Assafa TE; Shahu MK; Scholten A; Menke-Sell SK; Yamada H; Koch KW; Milhauser G; Ames JB
    Biochemistry; 2021 Oct; 60(41):3058-3070. PubMed ID: 34609135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guanylate cyclase-activating proteins: structure, function, and diversity.
    Palczewski K; Sokal I; Baehr W
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1123-30. PubMed ID: 15336959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.