BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20152468)

  • 1. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots.
    Liang GX; Liu HY; Zhang JR; Zhu JJ
    Talanta; 2010 Mar; 80(5):2172-6. PubMed ID: 20152468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots.
    Liang GX; Gu MM; Zhang JR; Zhu JJ
    Nanotechnology; 2009 Oct; 20(41):415103. PubMed ID: 19762946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots.
    Wang Q; Yu X; Zhan G; Li C
    Biosens Bioelectron; 2014 Apr; 54():311-6. PubMed ID: 24291268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Cysteine-Capped Zn(x)Cd(1)(-)(x)Se alloyed quantum dots emitting in the blue-green spectral range.
    Liu FC; Cheng TL; Shen CC; Tseng WL; Chiang MY
    Langmuir; 2008 Mar; 24(5):2162-7. PubMed ID: 18205420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence.
    Liang GX; Li LL; Liu HY; Zhang JR; Burda C; Zhu JJ
    Chem Commun (Camb); 2010 May; 46(17):2974-6. PubMed ID: 20386841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes.
    Cao M; Liu M; Cao C; Xia Y; Bao L; Jin Y; Yang S; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1043-6. PubMed ID: 20093069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of near-infrared-emitting CdTeSe and CdZnTeSe quantum dots.
    Yang F; Yang P; Zhang L
    Luminescence; 2013; 28(6):836-41. PubMed ID: 23060275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assaying of Cu
    Zhang H; Li Z; Huang H; Ouyang S; Deng Y; Zhao Q
    Luminescence; 2021 Sep; 36(6):1513-1524. PubMed ID: 34048630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates: selective detection and fluorescence imaging in living cells.
    Maity D; Manna AK; Karthigeyan D; Kundu TK; Pati SK; Govindaraju T
    Chemistry; 2011 Sep; 17(40):11152-61. PubMed ID: 21882277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging.
    Xue B; Deng DW; Cao J; Liu F; Li X; Akers W; Achilefu S; Gu YQ
    Dalton Trans; 2012 Apr; 41(16):4935-47. PubMed ID: 22451225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON fluorescence sensor for highly selective and sensitive detection of Cd2+.
    Gui R; An X; Su H; Shen W; Chen Z; Wang X
    Talanta; 2012 May; 94():257-62. PubMed ID: 22608445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay.
    Priyam A; Chatterjee A; Bhattacharya SC; Saha A
    Photochem Photobiol Sci; 2009 Mar; 8(3):362-70. PubMed ID: 19255677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots.
    Wang GL; Dong YM; Yang HX; Li ZJ
    Talanta; 2011 Jan; 83(3):943-7. PubMed ID: 21147341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa.
    Rahimi Y; Shrestha S; Banerjee T; Deo SK
    Anal Biochem; 2007 Nov; 370(1):60-7. PubMed ID: 17599800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots.
    Ali EM; Zheng Y; Yu HH; Ying JY
    Anal Chem; 2007 Dec; 79(24):9452-8. PubMed ID: 18004817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and sensitive method for L-cysteine detection based on the fluorescence intensity increment of quantum dots.
    Huang S; Xiao Q; Li R; Guan HL; Liu J; Liu XR; He ZK; Liu Y
    Anal Chim Acta; 2009 Jul; 645(1-2):73-8. PubMed ID: 19481633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient near-infrared electrochemiluminescence from CdTe nanocrystals with low triggering potential and ultrasensitive sensing ability.
    Liang G; Shen L; Zou G; Zhang X
    Chemistry; 2011 Sep; 17(37):10213-5. PubMed ID: 21837690
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of highly fluorescent glutathione-capped Zn(x)Hg(1-x)Se quantum dot and its application for sensing copper ion.
    Liu FC; Chen YM; Lin JH; Tseng WL
    J Colloid Interface Sci; 2009 Sep; 337(2):414-9. PubMed ID: 19524936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.