BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20152468)

  • 21. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II).
    Xia YS; Zhu CQ
    Talanta; 2008 Mar; 75(1):215-21. PubMed ID: 18371870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots.
    Liao P; Yan ZY; Xu ZJ; Sun X
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jun; 72(5):1066-70. PubMed ID: 19201257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-acetylglucosamine biofunctionalized CdSeTe quantum dots as fluorescence probe for specific protein recognition.
    Cheng FF; Liang GX; Shen YY; Rana RK; Zhu JJ
    Analyst; 2013 Jan; 138(2):666-70. PubMed ID: 23181261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal ion (silver, cadmium and zinc ions) modified CdS quantum dots for ultrasensitive copper ion sensing.
    Wang GL; Dong YM; Li ZJ
    Nanotechnology; 2011 Feb; 22(8):085503. PubMed ID: 21242634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence sensing of nitric oxide in aqueous solution by triethanolamine-modified CdSe quantum dots.
    Yan XQ; Shang ZB; Zhang Z; Wang Y; Jin WJ
    Luminescence; 2009; 24(4):255-9. PubMed ID: 19294661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and L-cysteine in aqueous solution.
    Zong J; Yang X; Trinchi A; Hardin S; Cole I; Zhu Y; Li C; Muster T; Wei G
    Biosens Bioelectron; 2014 Jan; 51():330-5. PubMed ID: 23994615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.
    Fan GC; Zhu H; Shen Q; Han L; Zhao M; Zhang JR; Zhu JJ
    Chem Commun (Camb); 2015 Apr; 51(32):7023-6. PubMed ID: 25804131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method.
    Deng Z; Yan H; Liu Y
    J Am Chem Soc; 2009 Dec; 131(49):17744-5. PubMed ID: 19928806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.
    Cao Y; Zhang A; Ma Q; Liu N; Yang P
    Luminescence; 2013; 28(3):287-93. PubMed ID: 23427119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging.
    Jin T; Yoshioka Y; Fujii F; Komai Y; Seki J; Seiyama A
    Chem Commun (Camb); 2008 Nov; (44):5764-6. PubMed ID: 19009074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared.
    Kim SW; Zimmer JP; Ohnishi S; Tracy JB; Frangioni JV; Bawendi MG
    J Am Chem Soc; 2005 Aug; 127(30):10526-32. PubMed ID: 16045339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots.
    Carrillo-Carrión C; Cárdenas S; Simonet BM; Valcárcel M
    Anal Chem; 2009 Jun; 81(12):4730-3. PubMed ID: 19462974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-pot synthesis of the stable CdZnTeS quantum dots for the rapid and sensitive detection of copper-activated enzyme.
    Mao G; Liu C; Du M; Zhang Y; Ji X; He Z
    Talanta; 2018 Aug; 185():123-131. PubMed ID: 29759178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients.
    Sáez L; Molina J; Florea DI; Planells EM; Cabeza MC; Quintero B
    Anal Chim Acta; 2013 Jun; 785():111-8. PubMed ID: 23764451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes.
    Li X; Li J; Kuang H; Feng L; Yi S; Xia X; Huang H; Chen Y; Tang C; Zeng Y
    Anal Chim Acta; 2013 Nov; 802():82-8. PubMed ID: 24176508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots.
    Collier BB; Singh S; McShane M
    Analyst; 2011 Mar; 136(5):962-7. PubMed ID: 21170467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution.
    Shang ZB; Wang Y; Jin WJ
    Talanta; 2009 Apr; 78(2):364-9. PubMed ID: 19203596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots.
    Adegoke O; Park EY
    Sci Rep; 2016 Jun; 6():27288. PubMed ID: 27250067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing.
    Goswami N; Giri A; Kar S; Bootharaju MS; John R; Xavier PL; Pradeep T; Pal SK
    Small; 2012 Oct; 8(20):3175-84. PubMed ID: 22826036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicolor quantum dot encoding for polymeric particle-based optical ion sensors.
    Xu C; Bakker E
    Anal Chem; 2007 May; 79(10):3716-23. PubMed ID: 17437337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.