BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2015252)

  • 1. Proton nuclear magnetic resonance studies on the molecular dynamics of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol bilayers.
    Han XL; Gross RW
    Biochim Biophys Acta; 1991 Mar; 1063(1):129-36. PubMed ID: 2015252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparate molecular dynamics of plasmenylcholine and phosphatidylcholine bilayers.
    Pak JH; Bork VP; Norberg RE; Creer MH; Wolf RA; Gross RW
    Biochemistry; 1987 Jul; 26(15):4824-30. PubMed ID: 2822100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of binary mixtures of plasmenylcholine/arachidonic acid and phosphatidylcholine/arachidonic acid--a study using fluorescence and NMR spectroscopy.
    Chen X; Han X; Gross RW
    Biochim Biophys Acta; 1993 Jul; 1149(2):241-8. PubMed ID: 8323943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs.
    Han XL; Gross RW
    Biochemistry; 1990 May; 29(20):4992-6. PubMed ID: 2364071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium flux through gramicidin ion channels is augmented in vesicles comprised of plasmenylcholine: correlations between gramicidin conformation and function in chemically distinct host bilayer matrices.
    Chen X; Gross RW
    Biochemistry; 1995 Jun; 34(22):7356-64. PubMed ID: 7540040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations.
    Rog T; Koivuniemi A
    Biochim Biophys Acta; 2016 Jan; 1858(1):97-103. PubMed ID: 26522077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements.
    Bittman R; Clejan S; Lund-Katz S; Phillips MC
    Biochim Biophys Acta; 1984 May; 772(2):117-26. PubMed ID: 6722139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers.
    Han XL; Gross RW
    Biochim Biophys Acta; 1991 Oct; 1069(1):37-45. PubMed ID: 1932047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y; Han X; Gross RW
    Biochemistry; 1998 Feb; 37(8):2346-55. PubMed ID: 9485381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.
    Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E
    Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol-induced fluid-phase immiscibility in membranes.
    Sankaram MB; Thompson TE
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8686-90. PubMed ID: 1656453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency motion in membranes. The effect of cholesterol and proteins.
    Cornell BA; Davenport JB; Separovic F
    Biochim Biophys Acta; 1982 Jul; 689(2):337-45. PubMed ID: 6180764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies.
    Ferreira TM; Coreta-Gomes F; Ollila OH; Moreno MJ; Vaz WL; Topgaard D
    Phys Chem Chem Phys; 2013 Feb; 15(6):1976-89. PubMed ID: 23258433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of cholesterol on membrane dynamics on different timescales in lipid bilayers from fast field-cycling NMR relaxometry studies of unilamellar vesicles.
    Fraenza CC; Meledandri CJ; Anoardo E; Brougham DF
    Chemphyschem; 2014 Feb; 15(3):425-35. PubMed ID: 24482248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
    Tauskela JS; Thompson M
    Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of plasmalogen model membranes containing cholesterol: a deuterium NMR study.
    Malthaner M; Hermetter A; Paltauf F; Seelig J
    Biochim Biophys Acta; 1987 Jun; 900(2):191-7. PubMed ID: 3593714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton magnetic relaxation studies of mixed phosphatidylcholine/fatty acid and mixed phosphatidylcholine bimolecular bilayers.
    Podo F; Blasie JK
    Biochim Biophys Acta; 1976 Jan; 419(1):1-18. PubMed ID: 1244855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
    Lindblom G; Orädd G; Filippov A
    Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.