These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2015265)

  • 41. D-galactose transport in rat intestinal brush border membrane vesicles studied with a molecular-sieve technique.
    Bronk JR; Hastewell JG
    J Physiol; 1986 Jun; 375():71-9. PubMed ID: 3795071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.
    Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C
    J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diabetes mellitus and the sodium electrochemical gradient across the brush border membrane of rat intestinal enterocytes.
    Debnam ES; Ebrahim HY
    J Endocrinol; 1989 Dec; 123(3):453-9. PubMed ID: 2607255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium and glucose uptake in rat small intestinal brush-border membrane vesicles. Modulation by exogenous hypercortisolism and 1,25-dihydroxyvitamin D-3.
    Braun HJ; Birkenhäger JC; De Jonge HR
    Biochim Biophys Acta; 1984 Jul; 774(1):81-90. PubMed ID: 6547350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats.
    Minami H; Kim JR; Tada K; Takahashi F; Miyamoto K; Nakabou Y; Sakai K; Hagihira H
    Gastroenterology; 1993 Sep; 105(3):692-7. PubMed ID: 8359641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose.
    Sugao N; Sugawara M; Minami H; Uto M; Umezawa Y
    Anal Chem; 1993 Feb; 65(4):363-9. PubMed ID: 8439009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.
    Marette A; Dimitrakoudis D; Shi Q; Rodgers CD; Klip A; Vranic M
    Endocrine; 1999 Feb; 10(1):13-8. PubMed ID: 10403566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphate transport by jejunal brush border membrane vesicles of the streptozocin-diabetic rat.
    Ghishan FK; Borowitz S; Mulberg A
    Diabetes; 1985 Aug; 34(8):723-7. PubMed ID: 4018414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early diabetes-induced changes in rat jejunal glucose transport and the response to insulin.
    Sharp PA; Boyer S; Srai SK; Baldwin SA; Debnam ES
    J Endocrinol; 1997 Jul; 154(1):19-25. PubMed ID: 9246934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small-intestinal Na+/D-glucose cotransport. Inactivation of sugar transport and phlorizin binding by thiol-group and amino-group reagents.
    Biber J; Weber J; Semenza G
    Biochim Biophys Acta; 1983 Mar; 728(3):429-37. PubMed ID: 6681713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of cadmium with brush border membrane vesicles from the rat small intestine.
    Bevan C; Foulkes EC
    Toxicology; 1989 Mar; 54(3):297-309. PubMed ID: 2495582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation and reconstitution of the intestinal Na+/glucose cotransporter.
    Peerce BE; Clarke RD
    J Biol Chem; 1990 Jan; 265(3):1731-6. PubMed ID: 2295652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic advantage for transport into hamster intestine of glucose generated from phlorizin by brush border beta-glucosidase.
    Hanke DW; Warden DA; Evans JO; Fannin FF; Diedrich DF
    Biochim Biophys Acta; 1980 Jul; 599(2):652-63. PubMed ID: 6773568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental maturation of D-glucose transport by rat jejunal brush-border membrane vesicles.
    Ghishan FK; Wilson FA
    Am J Physiol; 1985 Jan; 248(1 Pt 1):G87-92. PubMed ID: 4038441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M; Calonge ML; Peral MJ; Ilundáin AA
    Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: stoichiometry and order of binding.
    Turner RJ; Silverman M
    J Membr Biol; 1981 Jan; 58(1):43-55. PubMed ID: 7194377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutrient uptake by rat enterocytes during diabetes mellitus; evidence for an increased sodium electrochemical gradient.
    Debnam ES; Karasov WH; Thompson CS
    J Physiol; 1988 Mar; 397():503-12. PubMed ID: 3411516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes.
    Corpe CP; Basaleh MM; Affleck J; Gould G; Jess TJ; Kellett GL
    Pflugers Arch; 1996 Jun; 432(2):192-201. PubMed ID: 8662294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport of glucose and leucine by intestinal membrane vesicles in genetic diabetes.
    Bennetts R; Ramaswamy K
    Am J Physiol; 1980 May; 238(5):G419-23. PubMed ID: 7377353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of beta-adrenergic agonist-induced transmural transport of glucose in rat small intestine. Regulation of phosphorylation of SGLT1 controls the function.
    Ishikawa Y; Eguchi T; Ishida H
    Biochim Biophys Acta; 1997 Jul; 1357(3):306-18. PubMed ID: 9268055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.