These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20152884)

  • 1. The effect of hyperpolarizing inputs on the dynamics of a bursting pacemaker neuron model in the pre-Bötzinger complex.
    Shirahata T
    Neurosci Lett; 2010 Mar; 473(1):16-21. PubMed ID: 20152884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro.
    Del Negro CA; Koshiya N; Butera RJ; Smith JC
    J Neurophysiol; 2002 Nov; 88(5):2242-50. PubMed ID: 12424266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):382-97. PubMed ID: 10400966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background sodium current stabilizes bursting in respiratory pacemaker neurons.
    Tryba AK; Ramirez JM
    J Neurobiol; 2004 Sep; 60(4):481-9. PubMed ID: 15307152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations Of coupled pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):398-415. PubMed ID: 10400967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic bursting activity in the pre-Bötzinger complex: role of persistent sodium and potassium currents.
    Rybak IA; Shevtsova NA; Ptak K; McCrimmon DR
    Biol Cybern; 2004 Jan; 90(1):59-74. PubMed ID: 14762725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
    Wu N; Enomoto A; Tanaka S; Hsiao CF; Nykamp DQ; Izhikevich E; Chandler SH
    J Neurophysiol; 2005 May; 93(5):2710-22. PubMed ID: 15625100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat.
    Johnson SM; Smith JC; Funk GD; Feldman JL
    J Neurophysiol; 1994 Dec; 72(6):2598-608. PubMed ID: 7897477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions.
    Del Negro CA; Johnson SM; Butera RJ; Smith JC
    J Neurophysiol; 2001 Jul; 86(1):59-74. PubMed ID: 11431488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
    Golomb D; Yue C; Yaari Y
    J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium currents in neurons from the rostroventrolateral medulla of the rat.
    Rybak IA; Ptak K; Shevtsova NA; McCrimmon DR
    J Neurophysiol; 2003 Sep; 90(3):1635-42. PubMed ID: 12761275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of the kernel for respiratory rhythm generation in a novel preparation: the pre-Bötzinger complex "island".
    Johnson SM; Koshiya N; Smith JC
    J Neurophysiol; 2001 Apr; 85(4):1772-6. PubMed ID: 11287498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the mechanism for respiratory rhythm generation.
    McCrimmon DR; Ramirez JM; Alford S; Zuperku EJ
    Bioessays; 2000 Jan; 22(1):6-9. PubMed ID: 10649284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia.
    Peña F; Parkis MA; Tryba AK; Ramirez JM
    Neuron; 2004 Jul; 43(1):105-17. PubMed ID: 15233921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of pacemaker activity in bursting neurons of snail, Helix pomatia.
    Berezetskaya NM; Kharkyanen VN; Kononenko NI
    J Theor Biol; 1996 Nov; 183(2):207-18. PubMed ID: 8977878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory-like rhythmic activity can be produced by an excitatory network of non-pacemaker neuron models.
    Kosmidis EK; Pierrefiche O; Vibert JF
    J Neurophysiol; 2004 Aug; 92(2):686-99. PubMed ID: 15277592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanisms underlying bursting pacemaker discharges in invertebrate neurons.
    Gulrajani RM; Roberge FA
    Fed Proc; 1978 Jun; 37(8):2146-52. PubMed ID: 658454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal pacemaker for breathing visualized in vitro.
    Koshiya N; Smith JC
    Nature; 1999 Jul; 400(6742):360-3. PubMed ID: 10432113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiration-related rhythmic activity in the rostral medulla of newborn rats.
    Onimaru H; Kumagawa Y; Homma I
    J Neurophysiol; 2006 Jul; 96(1):55-61. PubMed ID: 16495360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.