These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 201529)

  • 1. Rapid conversion by insulin of hepatic intermediary metabolism from glucose production to glucose utilization in the liver of alloxan-diabetic rats.
    Seitz HJ; Müller MJ; Krone W; Tarnowski W
    Diabetes; 1977 Dec; 26(12):1159-74. PubMed ID: 201529
    [No Abstract]   [Full Text] [Related]  

  • 2. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP.
    Seitz HJ; Müller MJ; Krone W; Tarnowski W
    Arch Biochem Biophys; 1977 Oct; 183(2):647-63. PubMed ID: 200176
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of free fatty acids on hepatic adenine nucleotide content and oxidative metabolism.
    Mannaerts G; Debeer LJ; De Schepper PJ
    Arch Int Physiol Biochim; 1974; 82(2):357-8. PubMed ID: 4135881
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic amp (cAMP) in hearts of alloxan-diabetic rats.
    Chaudhuri SN; Shipp JC
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():319-30. PubMed ID: 4377604
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine 3',5'cyclic monophosphate in adipose tissue of diabetic rats.
    Schimmel RJ
    Biochim Biophys Acta; 1976 Dec; 451(2):363-71. PubMed ID: 187224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of starvation and of acute and chronic alloxan diabetes on myocardial substrate levels and on liver glycogen in the rat in vivo.
    Kraupp O; Adler-Kastner L; Niessner H; Plank B
    Eur J Biochem; 1967 Sep; 2(2):197-214. PubMed ID: 6078532
    [No Abstract]   [Full Text] [Related]  

  • 7. Reduced high-energy phosphate levels in rat hearts. I. Effects of alloxan diabetes.
    Allison TB; Bruttig SP; Crass MF; Eliot RS; Shipp JC
    Am J Physiol; 1976 Jun; 230(6):1744-50. PubMed ID: 7145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of insulin on the metabolism of isolated perfused liver of normal and alloxan-diabetic rats. II. Changes in metabolism under the influence of intraportal insulin infusions].
    Söling HD; Kneer P; Drägert W; Creutzfeldt W
    Diabetologia; 1966 Jun; 2(1):32-44. PubMed ID: 6005288
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of the metabolism of isolated livers of normal and alloxan-diabetic rats perfused with insulin.
    Haft DE
    Diabetes; 1968 May; 17(5):244-50. PubMed ID: 5648365
    [No Abstract]   [Full Text] [Related]  

  • 10. Hepatic metabolism of free fatty acids in experimental diabetes.
    Woodside WF; Heimberg M
    Isr J Med Sci; 1972 Mar; 8(3):309-16. PubMed ID: 4339335
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy response in the liver of diabetic rats to hemorrhagic shock: physiologic significance of decreased insulin response.
    Ida T; Yamamoto M; Yamada T; Ozawa K; Honjo I; Kamano T; Garbus J; Cowley RA
    Am Surg; 1979 Apr; 45(4):238-45. PubMed ID: 434621
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism.
    Jefferson LS; Exton JH; Butcher RW; Sutherland EW; Park CR
    J Biol Chem; 1968 Mar; 243(5):1031-8. PubMed ID: 5640968
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of tryptophan administration on fatty acid synthesis in the liver of the fasted normal rat.
    Sakurai T; Miyazawa S; Shindo Y; Hashimoto T
    Biochim Biophys Acta; 1974 Sep; 360(3):275-88. PubMed ID: 4416225
    [No Abstract]   [Full Text] [Related]  

  • 14. FK-614, a selective peroxisome proliferator-activated receptor gamma agonist, improves peripheral glucose utilization while decreasing hepatic insulin extraction in alloxan-induced diabetic dogs.
    Uchino H; Kim T; Lam TK; Yoshii H; Klement P; Williams W; Kawamori R; Giacca A
    Metabolism; 2005 Sep; 54(9):1250-8. PubMed ID: 16125538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoglycemic effects of a beta-agonist, Ro 16-8714, in streptozotocin-diabetic rats: decreased hepatic glucose production and increased glucose utilization in oxidative muscles.
    Ferré P; Pénicaud L; Hitier Y; Meier M; Girard J
    Metabolism; 1992 Feb; 41(2):180-3. PubMed ID: 1346545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in metabolic fate of glucose in the liver of diabetic animals.
    Anderson JW
    Am J Clin Nutr; 1974 Jul; 27(7):746-55. PubMed ID: 4278932
    [No Abstract]   [Full Text] [Related]  

  • 17. Relative contribution of glycogenolysis and gluconeogenesis to hepatic glucose production in control and diabetic rats. A re-examination in the presence of euglycaemia.
    Giaccari A; Morviducci L; Pastore L; Zorretta D; Sbraccia P; Maroccia E; Buongiorno A; Tamburrano G
    Diabetologia; 1998 Mar; 41(3):307-14. PubMed ID: 9541171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of quinolinic acid on the metabolite profile and regulation of carbohydrate and lipid metabolism in the liver of diabetic rats.
    Gumaa KA; Sochor M; McLean P; Greenbaum AL
    Arch Biochem Biophys; 1981 Jan; 206(1):1-7. PubMed ID: 7212709
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of vitamin D3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats.
    George N; Kumar TP; Antony S; Jayanarayanan S; Paulose CS
    Br J Nutr; 2012 Oct; 108(8):1410-8. PubMed ID: 22221397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of high blood glucose concentration during hemorrhagic shock in alloxan diabetic rats.
    Yamamoto M; Ozawa K; Tobe T
    Circ Shock; 1981; 8(1):49-57. PubMed ID: 7237684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.