BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20152983)

  • 1. Development and validation of ultrasound speckle tracking to quantify tendon displacement.
    Korstanje JW; Selles RW; Stam HJ; Hovius SE; Bosch JG
    J Biomech; 2010 May; 43(7):1373-9. PubMed ID: 20152983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation.
    Lai TY; Chen HI; Shih CC; Kuo LC; Hsu HY; Huang CC
    Med Phys; 2016 Jan; 43(1):148. PubMed ID: 26745907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo estimation of flexor digitorum superficialis tendon displacement with speckle tracking on 2-D ultrasound images using Laplacian, Gaussian and Rayleigh techniques.
    Stegman KJ; Djurickovic S; Dechev N
    Ultrasound Med Biol; 2014 Mar; 40(3):568-82. PubMed ID: 24342915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered patterns of displacement within the Achilles tendon following surgical repair.
    Fröberg Å; Cissé AS; Larsson M; Mårtensson M; Peolsson M; Movin T; Arndt A
    Knee Surg Sports Traumatol Arthrosc; 2017 Jun; 25(6):1857-1865. PubMed ID: 28004174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.
    Chuang BI; Hsu JH; Kuo LC; Jou IM; Su FC; Sun YN
    Biomed Eng Online; 2017 Apr; 16(1):47. PubMed ID: 28427411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle Tracking of Tendon Displacement in the Carpal Tunnel: Improved Quantification Using Singular Value Decomposition.
    Bandaru RS; Evers S; Selles RW; Thoreson AR; Amadio PC; Hovius SE; Bosch JG
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):817-824. PubMed ID: 29993671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendon displacements during voluntary and involuntary finger movements.
    van Beek N; Gijsbertse K; Selles RW; de Korte CL; Veeger DHEJ; Stegeman DF; Maas H
    J Biomech; 2018 Jan; 67():62-68. PubMed ID: 29242009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound assessment of the motion patterns of human flexor digitorum superficialis and profundus tendons with speckle tracking.
    Yoshii Y; Henderson J; Villarraga HR; Zhao C; An KN; Amadio PC
    J Orthop Res; 2011 Oct; 29(10):1465-9. PubMed ID: 21469183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tendon and nerve displacement at the wrist during finger movements.
    Ugbolue UC; Hsu WH; Goitz RJ; Li ZM
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):50-6. PubMed ID: 15567536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue.
    Fröberg Å; Mårtensson M; Larsson M; Janerot-Sjöberg B; D'Hooge J; Arndt A
    Acta Radiol; 2016 Oct; 57(10):1223-9. PubMed ID: 26787677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.
    Karamanidis K; Travlou A; Krauss P; Jaekel U
    Ultrasound Med Biol; 2016 Jul; 42(7):1689-700. PubMed ID: 27117630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Tracking of Muscle Tendon Junctions in Ultrasound Images Using Speckle Reduction.
    Englmair B; Leitner C; Baumgartner C
    Stud Health Technol Inform; 2020 Jun; 271():1-8. PubMed ID: 32578534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Myotendinous Junction Tracking in Ultrasound Images with Phase-Based Segmentation.
    Zhou GQ; Zhang Y; Wang RL; Zhou P; Zheng YP; Tarassova O; Arndt A; Chen Q
    Biomed Res Int; 2018; 2018():3697835. PubMed ID: 29750152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-based speckle-tracking in tendons: a critical analysis for the technician and the clinician.
    Svensson RB; Slane LC; Magnusson SP; Bogaerts S
    J Appl Physiol (1985); 2021 Feb; 130(2):445-456. PubMed ID: 33332991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences.
    Revell J; Mirmehdi M; McNally D
    IEEE Trans Med Imaging; 2005 Jun; 24(6):755-66. PubMed ID: 15957599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of normalized cross-correlation analysis for automatic tendon excursion measurement in dynamic ultrasound imaging.
    Pearson SJ; Ritchings T; Mohamed AS
    J Appl Biomech; 2013 Apr; 29(2):165-73. PubMed ID: 22695495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilevel and motion model-based ultrasonic speckle tracking algorithms.
    Yeung F; Levinson SF; Parker KJ
    Ultrasound Med Biol; 1998 Mar; 24(3):427-41. PubMed ID: 9587997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tendon and neurovascular bundle displacement in the palm with hand flexion and extension: an MRI and gross anatomy correlative study.
    Canuto HC; Oliveira ML; Fishbein KW; Spencer RG
    J Magn Reson Imaging; 2006 May; 23(5):742-6. PubMed ID: 16570243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo motion transmission in the inactive gastrocnemius medialis muscle-tendon unit during ankle and knee joint rotation.
    De Monte G; Arampatzis A; Stogiannari C; Karamanidis K
    J Electromyogr Kinesiol; 2006 Oct; 16(5):413-22. PubMed ID: 16309922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.