These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. SMAR1, a novel, alternatively spliced gene product, binds the Scaffold/Matrix-associated region at the T cell receptor beta locus. Chattopadhyay S; Kaul R; Charest A; Housman D; Chen J Genomics; 2000 Aug; 68(1):93-6. PubMed ID: 10950932 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related]
4. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3. Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530 [TBL] [Abstract][Full Text] [Related]
5. NF-kappaB-repressing factor inhibits elongation of human immunodeficiency virus type 1 transcription by DRB sensitivity-inducing factor. Dreikhausen U; Hiebenthal-Millow K; Bartels M; Resch K; Nourbakhsh M Mol Cell Biol; 2005 Sep; 25(17):7473-83. PubMed ID: 16107696 [TBL] [Abstract][Full Text] [Related]
6. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Holmqvist PH; Belikov S; Zaret KS; Wrange O Exp Cell Res; 2005 Apr; 304(2):593-603. PubMed ID: 15748903 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein. Zhang JL; Sharma PL; Crumpacker CS Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334 [TBL] [Abstract][Full Text] [Related]
8. Identification of human cytomegalovirus target sequences in the human immunodeficiency virus long terminal repeat. Potential role of IE2-86 binding to sequences between -120 and -20 in promoter transactivation. Yurochko AD; Huong SM; Huang ES J Hum Virol; 1999; 2(2):81-90. PubMed ID: 10225210 [TBL] [Abstract][Full Text] [Related]
9. Role of acetylases and deacetylase inhibitors in IRF-1-mediated HIV-1 long terminal repeat transcription. Marsili G; Remoli AL; Sgarbanti M; Battistini A Ann N Y Acad Sci; 2004 Dec; 1030():636-43. PubMed ID: 15659847 [TBL] [Abstract][Full Text] [Related]
10. Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element. Sinha S; Malonia SK; Mittal SP; Singh K; Kadreppa S; Kamat R; Mukhopadhyaya R; Pal JK; Chattopadhyay S EMBO J; 2010 Feb; 29(4):830-42. PubMed ID: 20075864 [TBL] [Abstract][Full Text] [Related]
11. Regulation of HIV-1 gene expression by NF-IL6. Tesmer VM; Bina M J Mol Biol; 1996 Sep; 262(3):327-35. PubMed ID: 8844998 [TBL] [Abstract][Full Text] [Related]
12. Chromatin remodeling protein SMAR1 regulates NF-κB dependent Interleukin-8 transcription in breast cancer. Malonia SK; Yadav B; Sinha S; Lazennec G; Chattopadhyay S Int J Biochem Cell Biol; 2014 Oct; 55():220-6. PubMed ID: 25239884 [TBL] [Abstract][Full Text] [Related]
13. Chromatin remodelling protein SMAR1 inhibits p53 dependent transactivation by regulating acetyl transferase p300. Sinha S; Malonia SK; Mittal SP; Mathai J; Pal JK; Chattopadhyay S Int J Biochem Cell Biol; 2012 Jan; 44(1):46-52. PubMed ID: 22074660 [TBL] [Abstract][Full Text] [Related]
14. HIV-1 tat transcriptional activity is regulated by acetylation. Kiernan RE; Vanhulle C; Schiltz L; Adam E; Xiao H; Maudoux F; Calomme C; Burny A; Nakatani Y; Jeang KT; Benkirane M; Van Lint C EMBO J; 1999 Nov; 18(21):6106-18. PubMed ID: 10545121 [TBL] [Abstract][Full Text] [Related]
15. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Rampalli S; Pavithra L; Bhatt A; Kundu TK; Chattopadhyay S Mol Cell Biol; 2005 Oct; 25(19):8415-29. PubMed ID: 16166625 [TBL] [Abstract][Full Text] [Related]
16. Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18 E6 transcription through alteration of chromatin histone deacetylation. Chakraborty S; Das K; Saha S; Mazumdar M; Manna A; Chakraborty S; Mukherjee S; Khan P; Adhikary A; Mohanty S; Chattopadhyay S; Biswas SC; Sa G; Das T J Biol Chem; 2014 Oct; 289(42):29074-85. PubMed ID: 25157104 [TBL] [Abstract][Full Text] [Related]
17. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. Williams SA; Chen LF; Kwon H; Ruiz-Jarabo CM; Verdin E; Greene WC EMBO J; 2006 Jan; 25(1):139-49. PubMed ID: 16319923 [TBL] [Abstract][Full Text] [Related]
18. Identification of novel T cell factor 4 (TCF-4) binding sites on the HIV long terminal repeat which associate with TCF-4, β-catenin, and SMAR1 to repress HIV transcription. Henderson LJ; Narasipura SD; Adarichev V; Kashanchi F; Al-Harthi L J Virol; 2012 Sep; 86(17):9495-503. PubMed ID: 22674979 [TBL] [Abstract][Full Text] [Related]
19. Synthetic HIV-1 Tat can dissociate HeLa nuclear protein-TAR RNA complexes in vitro: a novel Tat-nuclear protein interaction. Jeyapaul J; Seshamma T; Khan SA Oncogene; 1991 Sep; 6(9):1507-13. PubMed ID: 1923518 [TBL] [Abstract][Full Text] [Related]
20. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. Lusic M; Marcello A; Cereseto A; Giacca M EMBO J; 2003 Dec; 22(24):6550-61. PubMed ID: 14657027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]