BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 20153164)

  • 1. Nonribosomal peptide synthetases: structures and dynamics.
    Strieker M; Tanović A; Marahiel MA
    Curr Opin Struct Biol; 2010 Apr; 20(2):234-40. PubMed ID: 20153164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in the study of the mechanism and application of nonribosomal peptide synthetases].
    Wang SY
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):734-7. PubMed ID: 17944384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains.
    Marahiel MA; Essen LO
    Methods Enzymol; 2009; 458():337-51. PubMed ID: 19374989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
    Mootz HD; Schwarzer D; Marahiel MA
    Chembiochem; 2002 Jun; 3(6):490-504. PubMed ID: 12325005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization.
    Shaw-Reid CA; Kelleher NL; Losey HC; Gehring AM; Berg C; Walsh CT
    Chem Biol; 1999 Jun; 6(6):385-400. PubMed ID: 10375542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions.
    Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV
    J Biol Chem; 2021; 296():100432. PubMed ID: 33610550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases.
    Roongsawang N; Lim SP; Washio K; Takano K; Kanaya S; Morikawa M
    FEMS Microbiol Lett; 2005 Nov; 252(1):143-51. PubMed ID: 16182472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piecing together nonribosomal peptide synthesis.
    Reimer JM; Haque AS; Tarry MJ; Schmeing TM
    Curr Opin Struct Biol; 2018 Apr; 49():104-113. PubMed ID: 29444491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the termination module of a nonribosomal peptide synthetase.
    Tanovic A; Samel SA; Essen LO; Marahiel MA
    Science; 2008 Aug; 321(5889):659-63. PubMed ID: 18583577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis.
    Marahiel MA
    J Pept Sci; 2009 Dec; 15(12):799-807. PubMed ID: 19827002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi.
    Schwecke T; Göttling K; Durek P; Dueñas I; Käufer NF; Zock-Emmenthal S; Staub E; Neuhof T; Dieckmann R; von Döhren H
    Chembiochem; 2006 Apr; 7(4):612-22. PubMed ID: 16502473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase.
    Yamanaka K; Maruyama C; Takagi H; Hamano Y
    Nat Chem Biol; 2008 Dec; 4(12):766-72. PubMed ID: 18997795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology.
    Hur GH; Vickery CR; Burkart MD
    Nat Prod Rep; 2012 Oct; 29(10):1074-98. PubMed ID: 22802156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.
    Zou Y; Yin J
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5664-7. PubMed ID: 18801656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis.
    Lai JR; Koglin A; Walsh CT
    Biochemistry; 2006 Dec; 45(50):14869-79. PubMed ID: 17154525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases.
    Bloudoff K; Alonzo DA; Schmeing TM
    Cell Chem Biol; 2016 Mar; 23(3):331-9. PubMed ID: 26991102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis.
    Maruyama C; Hamano Y
    Methods Mol Biol; 2023; 2670():3-16. PubMed ID: 37184697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis.
    Izoré T; Cryle MJ
    Nat Prod Rep; 2018 Nov; 35(11):1120-1139. PubMed ID: 30207358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.