BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20153304)

  • 1. Contributions of selective knockout studies to understanding cholinesterase disposition and function.
    Camp S; Zhang L; Krejci E; Dobbertin A; Bernard V; Girard E; Duysen EG; Lockridge O; De Jaco A; Taylor P
    Chem Biol Interact; 2010 Sep; 187(1-3):72-7. PubMed ID: 20153304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.
    Camp S; Zhang L; Marquez M; de la Torre B; Long JM; Bucht G; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():79-86. PubMed ID: 16289062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase.
    Farar V; Mohr F; Legrand M; Lamotte d'Incamps B; Cendelin J; Leroy J; Abitbol M; Bernard V; Baud F; Fournet V; Houze P; Klein J; Plaud B; Tuma J; Zimmermann M; Ascher P; Hrabovska A; Myslivecek J; Krejci E
    J Neurochem; 2012 Sep; 122(5):1065-80. PubMed ID: 22747514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E; Bernard V; Camp S; Taylor P; Krejci E; Molgó J
    J Mol Neurosci; 2006; 30(1-2):99-100. PubMed ID: 17192646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration.
    Boudinot E; Bernard V; Camp S; Taylor P; Champagnat J; Krejci E; Foutz AS
    Respir Physiol Neurobiol; 2009 Jan; 165(1):40-8. PubMed ID: 18977317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the 5' intron in the control of acetylcholinesterase gene expression during myogenesis.
    De Jaco A; Camp S; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():372-3. PubMed ID: 16429497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mice lacking individual molecular forms of cholinesterases].
    Kučera M; Hrabovská A
    Ceska Slov Farm; 2016; 65(2):52-63. PubMed ID: 27356594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle.
    Cousin X; Bon S; Massoulié J; Bon C
    J Biol Chem; 1998 Apr; 273(16):9812-20. PubMed ID: 9545320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing of 5' introns dictates alternative splice selection of acetylcholinesterase pre-mRNA and specific expression during myogenesis.
    Luo ZD; Camp S; Mutero A; Taylor P
    J Biol Chem; 1998 Oct; 273(43):28486-95. PubMed ID: 9774478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinesterases regulation in the absence of ColQ.
    Sigoillot SM; Bourgeois F; Legay C
    Chem Biol Interact; 2010 Sep; 187(1-3):84-9. PubMed ID: 20153305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript.
    Montenegro MF; Nieto-Cerón S; Cabezas-Herrera J; Muñoz-Delgado E; Campoy FJ; Vidal CJ
    J Mol Neurosci; 2014 Jul; 53(3):429-35. PubMed ID: 24242952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction.
    Bernard V; Girard E; Hrabovska A; Camp S; Taylor P; Plaud B; Krejci E
    Mol Cell Neurosci; 2011 Jan; 46(1):272-81. PubMed ID: 20883790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing?
    Ohno K; Brengman JM; Felice KJ; Cornblath DR; Engel AG
    Am J Hum Genet; 1999 Sep; 65(3):635-44. PubMed ID: 10441569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function.
    Feng G; Krejci E; Molgo J; Cunningham JM; Massoulié J; Sanes JR
    J Cell Biol; 1999 Mar; 144(6):1349-60. PubMed ID: 10087275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular junction immaturity and muscle atrophy are hallmarks of the ColQ-deficient mouse, a model of congenital myasthenic syndrome with acetylcholinesterase deficiency.
    Sigoillot SM; Bourgeois F; Karmouch J; Molgó J; Dobbertin A; Chevalier C; Houlgatte R; Léger J; Legay C
    FASEB J; 2016 Jun; 30(6):2382-99. PubMed ID: 26993635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions--contribution and expression from motor neurons.
    Leung KW; Xie HQ; Chen VP; Mok MK; Chu GK; Choi RC; Tsim KW
    FEBS J; 2009 Jun; 276(11):3031-42. PubMed ID: 19490106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of a transcript encoding the proline-rich membrane anchor of globular muscle acetylcholinesterase. The suppressive roles of myogenesis and innervating nerves.
    Xie HQ; Choi RC; Leung KW; Siow NL; Kong LW; Lau FT; Peng HB; Tsim KW
    J Biol Chem; 2007 Apr; 282(16):11765-75. PubMed ID: 17324938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome.
    Rahman MA; Azuma Y; Nasrin F; Takeda J; Nazim M; Bin Ahsan K; Masuda A; Engel AG; Ohno K
    Sci Rep; 2015 Aug; 5():13208. PubMed ID: 26282582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons.
    Seidman S; Sternfeld M; Ben Aziz-Aloya R; Timberg R; Kaufer-Nachum D; Soreq H
    Mol Cell Biol; 1995 Jun; 15(6):2993-3002. PubMed ID: 7760797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.