These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20153370)

  • 21. The use of radiotelemetry to evaluate electrographic seizures in rats with kainate-induced epilepsy.
    Williams P; White A; Ferraro D; Clark S; Staley K; Dudek FE
    J Neurosci Methods; 2006 Jul; 155(1):39-48. PubMed ID: 16564574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic in vivo multi-circuit neurophysiological recordings in mice.
    Dzirasa K; Fuentes R; Kumar S; Potes JM; Nicolelis MA
    J Neurosci Methods; 2011 Jan; 195(1):36-46. PubMed ID: 21115042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex.
    Williams JC; Rennaker RL; Kipke DR
    Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Customizable cap implants for neurophysiological experimentation.
    Blonde JD; Roussy M; Luna R; Mahmoudian B; Gulli RA; Barker KC; Lau JC; Martinez-Trujillo JC
    J Neurosci Methods; 2018 Jul; 304():103-117. PubMed ID: 29694848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method of extracellular recording of neuronal activity in swimming mice.
    Korshunov VA; Averkin RG
    J Neurosci Methods; 2007 Sep; 165(2):244-50. PubMed ID: 17669505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.
    Blake AJ; Rodgers FC; Bassuener A; Hippensteel JA; Pearce TM; Pearce TR; Zarnowska ED; Pearce RA; Williams JC
    J Neurosci Methods; 2010 May; 189(1):5-13. PubMed ID: 20219536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technique for producing a carbon-fibre microelectrode with the fine recording tip.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 2000 Mar; 96(2):143-6. PubMed ID: 10720678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research.
    Overton JA; Cooke DF; Goldring AB; Lucero SA; Weatherford C; Recanzone GH
    J Neurophysiol; 2017 Dec; 118(6):3252-3270. PubMed ID: 28855286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel simplistic fabrication technique for cranial epidural electrodes for chronic recording and stimulation in rats.
    Russell C; Kissane RWP; Steenson DP; Chakrabarty S
    J Neurosci Methods; 2019 Jan; 311():239-242. PubMed ID: 30389487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of signal distortion through metal microelectrode recording circuits and filters.
    Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD
    J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials.
    Cham JG; Branchaud EA; Nenadic Z; Greger B; Andersen RA; Burdick JW
    J Neurophysiol; 2005 Jan; 93(1):570-9. PubMed ID: 15229215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal-to-noise ratio improvement in multiple electrode recording.
    Musial PG; Baker SN; Gerstein GL; King EA; Keating JG
    J Neurosci Methods; 2002 Mar; 115(1):29-43. PubMed ID: 11897361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical analysis of large-scale neuronal recording data.
    Reed JL; Kaas JH
    Neural Netw; 2010 Aug; 23(6):673-84. PubMed ID: 20472395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons.
    Zhang X; Wong WM; Zhang Y; Zhang Y; Gao F; Nelson RD; Larue JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3814-7. PubMed ID: 19965239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.