BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20153444)

  • 1. Load carrying during locomotion in the barnacle goose (Branta leucopsis): the effect of load placement and size.
    Tickle PG; Richardson MF; Codd JR
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Jul; 156(3):309-17. PubMed ID: 20153444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of load carrying on the energetics and kinematics of terrestrial locomotion in a diving bird.
    Tickle PG; Lean SC; Rose KA; Wadugodapitiya AP; Codd JR
    Biol Open; 2013; 2(11):1239-44. PubMed ID: 24244861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic cost of walking on gradients with a waddling gait.
    Nudds RL; Codd JR
    J Exp Biol; 2012 Aug; 215(Pt 15):2579-85. PubMed ID: 22786634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and kinematics of walking in the barnacle goose (Branta leucopsis).
    Nudds RL; Gardiner JD; Tickle PG; Codd JR
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Jul; 156(3):318-24. PubMed ID: 20138237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): the importance of wing moult.
    Portugal SJ; Green JA; Butler PJ
    J Exp Biol; 2007 Apr; 210(Pt 8):1391-7. PubMed ID: 17401121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories.
    York JM; Scadeng M; McCracken KG; Milsom WK
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29180602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the rate of oxygen consumption from heart rate in barnacle geese Branta leucopsis: effects of captivity and annual changes in body condition.
    Portugal SJ; Green JA; Cassey P; Frappell PB; Butler PJ
    J Exp Biol; 2009 Sep; 212(18):2941-8. PubMed ID: 19717676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of running: a new perspective.
    Kram R; Taylor CR
    Nature; 1990 Jul; 346(6281):265-7. PubMed ID: 2374590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of foot trajectory in walking toddlers: adaptation to load changes.
    Dominici N; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2007 Apr; 97(4):2790-801. PubMed ID: 17251371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic analysis of load carriage biomechanics during level walking.
    Ren L; Jones RK; Howard D
    J Biomech; 2005 Apr; 38(4):853-63. PubMed ID: 15713307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model predicting locomotor cost from limb length via force production.
    Pontzer H
    J Exp Biol; 2005 Apr; 208(Pt 8):1513-24. PubMed ID: 15802675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling for stress similarity and distorted-shape similarity in bending and torsion under maximal muscle forces concurs with geometric similarity among different-sized animals.
    Norberg RA; Aldrin BS
    J Exp Biol; 2010 Aug; 213(Pt 16):2873-88. PubMed ID: 20675557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms for minimizing energy expenditure in human locomotion.
    Saibene F
    Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of limb bone loading and body size in varanid lizards.
    Clemente CJ; Withers PC; Thompson G; Lloyd D
    J Exp Biol; 2011 Sep; 214(Pt 18):3013-20. PubMed ID: 21865513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotion while load-carrying in reduced gravities.
    Wickman LA; Luna B
    Aviat Space Environ Med; 1996 Oct; 67(10):940-6. PubMed ID: 9025816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetic cost of climbing in primates.
    Hanna JB; Schmitt D; Griffin TM
    Science; 2008 May; 320(5878):898. PubMed ID: 18487185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.