BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20153451)

  • 1. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual pairing between assistants: interaction of the twin-arginine system-specific chaperone DmsD with the chaperonin GroEL.
    Chan CS; Song X; Qazi SJ; Setiaputra D; Yip CK; Chao TC; Turner RJ
    Biochem Biophys Res Commun; 2015 Jan; 456(4):841-6. PubMed ID: 25522883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of a Tat leader peptide by co-expression with its chaperone.
    Stevens CM; Paetzel M
    Protein Expr Purif; 2012 Jul; 84(1):167-72. PubMed ID: 22609337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.
    Shanmugham A; Bakayan A; Völler P; Grosveld J; Lill H; Bollen YJ
    PLoS One; 2012; 7(3):e34159. PubMed ID: 22479549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.
    Chan CS; Winstone TM; Chang L; Stevens CM; Workentine ML; Li H; Wei Y; Ondrechen MJ; Paetzel M; Turner RJ
    Biochemistry; 2008 Mar; 47(9):2749-59. PubMed ID: 18247574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus.
    Ray N; Oates J; Turner RJ; Robinson C
    FEBS Lett; 2003 Jan; 534(1-3):156-60. PubMed ID: 12527378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates.
    Chan CS; Chang L; Winstone TM; Turner RJ
    FEBS Lett; 2010 Nov; 584(22):4553-8. PubMed ID: 20974141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a twin-arginine leader-binding protein.
    Oresnik IJ; Ladner CL; Turner RJ
    Mol Microbiol; 2001 Apr; 40(2):323-31. PubMed ID: 11309116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Interactions between Tat-specific redox enzyme peptides and their chaperones.
    Chan CS; Chang L; Rommens KL; Turner RJ
    J Bacteriol; 2009 Apr; 191(7):2091-101. PubMed ID: 19151138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway.
    Pérez-Rodríguez R; Fisher AC; Perlmutter JD; Hicks MG; Chanal A; Santini CL; Wu LF; Palmer T; DeLisa MP
    J Mol Biol; 2007 Mar; 367(3):715-30. PubMed ID: 17280684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme.
    Cherak SJ; Turner RJ
    Biomol Concepts; 2017 Sep; 8(3-4):155-167. PubMed ID: 28688222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo associations of Escherichia coli NarJ with a peptide of the first 50 residues of nitrate reductase catalytic subunit NarG.
    Li H; Turner RJ
    Can J Microbiol; 2009 Feb; 55(2):179-88. PubMed ID: 19295650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.